首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   13篇
  国内免费   5篇
安全科学   24篇
废物处理   30篇
环保管理   134篇
综合类   70篇
基础理论   126篇
环境理论   3篇
污染及防治   165篇
评价与监测   25篇
社会与环境   19篇
灾害及防治   9篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   11篇
  2019年   9篇
  2018年   13篇
  2017年   16篇
  2016年   12篇
  2015年   12篇
  2014年   9篇
  2013年   90篇
  2012年   13篇
  2011年   32篇
  2010年   18篇
  2009年   26篇
  2008年   27篇
  2007年   27篇
  2006年   19篇
  2005年   18篇
  2004年   17篇
  2003年   22篇
  2002年   14篇
  2001年   12篇
  2000年   6篇
  1999年   4篇
  1998年   8篇
  1997年   12篇
  1996年   7篇
  1995年   10篇
  1994年   8篇
  1993年   5篇
  1991年   4篇
  1990年   9篇
  1989年   7篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   11篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1979年   7篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1971年   3篇
  1961年   2篇
  1960年   2篇
排序方式: 共有605条查询结果,搜索用时 46 毫秒
101.
Abstract

A major component of the Southern Oxidants Study (SOS) 1992 Atlanta Intensive was the measurement of atmospheric nonmethane hydrocarbons. Ambient air samples were collected and analyzed by a network of strategically located automated gas chromatography (GC) systems (field systems). In addition, an extensive canister sampling network was deployed. Combined, more than 3000 chromatograms were recorded. The SOS science team targeted for quantitative analysis 56 compounds which may be substantial contributors to ozone formation or used as air mass tracers. A quality assurance program was instituted to ensure that good measurements were being made throughout the network for each target compound. Common, high-quality standards were used throughout the network. The performance of individual field systems was evaluated during the intensive through the analysis of challenge mixtures. This methodology helped to identify and correct analytical problems as they arose.  相似文献   
102.
ABSTRACT

Two collaborative studies have been conducted by the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) and National Health and Environmental Effects Research Laboratory to determine personal exposures and physiological responses to par-ticulate matter (PM) of elderly persons living in a retirement facility in Fresno, CA. Measurements of PM and other criteria air pollutants were made inside selected individual residences within the retirement facility and at a central outdoor site on the premises. In addition, personal PM exposure monitoring was conducted for a subset of the participants, and ambient PM monitoring data were available for comparison from the NERL PM research monitoring platform in central Fresno. Both a winter (February 1-28, 1999) and a spring (April 19-May 16, 1999) study were completed so that seasonal effects could be  相似文献   
103.
ABSTRACT

While researchers have linked acute (less than 12-hr) ambient O3, PM25, and CO concentrations to a variety of adverse health effects, few studies have characterized short-term exposures to these air pollutants, in part due to the lack of sensitive, accurate, and precise sampling technologies. In this paper, we present results from the laboratory and field evaluation of several new (or modified) samplers used in the “roll-around” system (RAS), which was developed to measure 1-hr O3, PM25, and CO exposures simultaneously. All the field evaluation data were collected during two sampling seasons: the summer of 1998 and the winter of 1999.

To measure 1-hr O3 exposures, a new active O3 sampler was developed that uses two nitrite-coated filters to measure O3 concentrations. Laboratory chamber tests found that the active O3 sampler performed extremely well, with a collection efficiency of 0.96 that did not vary with temperature or relative humidity (RH). In field collocation comparisons with a reference UV photometric monitor, the active O3 sampler had an effective collection efficiency ranging between 0.92 and 0.96 and a precision for 1-hr measurements ranging between 4 and 6 parts per billion (ppb). The limits of detection (LOD) of this method were 9 ppb-hr for the chamber tests and ~16 ppb-hr for the field comparison tests.

PM2.5 and CO concentrations were measured using modified continuous monitors—the DustTrak and the Langan, respectively. A size-selective inlet and a Nafion dryer were placed upstream of the DustTrak inlet to remove particles with aerodynamic diameters greater than 2.5 um and to dry particles prior to the measurements, respectively. During the field validation tests, the DustTrak consistently reported higher PM2.5 concentrations than those obtained by the collocated 12-hr PM2 5 PEM samples, by approximately a factor of 2. After the DustTrak response was corrected (correction factor of 2.07 in the summer and 2.02 in the winter), measurements obtained using these methods agreed well with R2 values of 0.87 in the summer and 0.81 in the winter. The results showed that the DustTrak can be used along with integrated measurements to measure the temporal and spatial variation in PM2 5 exposures. Finally, during the field validation tests, CO concentrations measured using the Langan were strongly correlated with those obtained using the reference method when the CO levels were above the LOD of the instrument [~1 part per million (ppm)].  相似文献   
104.
Abstract

The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall average percentage source contribution estimates (SCEs) for five source categories: gasoline engines (33 ± 4%), diesel engines (16 ± 2%), secondary SO4 2? (19 ± 2%), crustal/soil (22 ± 2%), and vegetative burning (10 ± 2%). The Unmix analysis was supplemented with scanning electron microscopy (SEM) of a limited number of filter samples for information on possible additional low-strength sources. Except for the diesel engine source category, the Unmix SCEs were generally consistent with an earlier multivariate receptor analysis of essentially the same data using the Positive Matrix Factorization (PMF) model. This article provides the first demonstration for an urban area of the capability of the Unmix receptor model.  相似文献   
105.
This paper summarizes a joint Superfund Innovative Technology Evaluation (SITE) project on slurry-phase biodegradation and a project to collect information for the data base on Best Demonstrated Available Technologies (BOAT). In this 12-week study, a creosote contaminated soil from the Burlington Northern Superfund site in Brainerd, Minnesota was used to evaluate the effectiveness of the bioslurry reactors. During the demonstration, five 64-liter stainless steel bioreactors, equipped with agitation, aeration and temperature controls were used. The pilot scale study employed a 30 percent slurry, an inoculum of indigenous polynuclear aromatic hydrocarbon (PAH) degraders, and inorganic nutrients.

Total PAH degradation averaged 93.4 ± 3.2 percent over all five operating reactors in the 12 weeks with 97.4 percent degradation of the 2- and 3-ring PAHs and 90 percent degradation of the 4- to 6-ring PAHs. A study of the air emissions, both semivolatile compounds such as naphthalene, anthracene, and phenanthrene and volatile compounds such as toluene, xylene, and benzene, from the units showed that the greatest amount of emissions occurred during the loading of the reactors and during the first few days of operation. Therefore, it may not be cost-effective to require elaborate emissions controls unless there are significant quantities of volatile compounds present in the soil or water to be treated in a bioslurry reactor system.  相似文献   
106.
Fixed beds of sorbent media are used for the evaluation of poiynuclear aromatic hydrocarbons (PAH) present in air. Twostage sampling and separate extraction and analyses of PAH associated with aerosol particles and those present in the vapor state are usually performed. The ability of commonly used sorbents to retain particulate matter introduces a potential for reducing the time and cost of PAH evaluation procedures.

The filtration efficiency of three sorbent media, Florisil, XAD-2, and polyurethanefoam (PUF), for particles in 0.1 to 1 µm size range was studied using airflow rates from 4 to 2501 /mm through a PS 1 sorbent cartridge. Theoretical considerations were used to identify the principal filtration mechanisms and to assess the predictability of the aerosol filtration performance of sorbent filters. The results of this study indicate XAD-2 to be an efficient filtration medium owing to the electrostatic enhancement of capturing and retaining aerosol particles.

As a result of theoretical considerations, Brownian diffusion and inertial deposition were found to be major filtration mechanisms accompanied by electrostatic effects. While the efficiency of the diffusional deposition mechanism was reasonably well predicted with available theories, modeling of submicron particle impaction at higher fluid velocities appeared to be inadequate. Further developments are suggested to improve our understanding of filtration phenomena in sorbent beds under high flow rate conditions.  相似文献   
107.
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM2.5 (particulate matter with diameter  2.5 μm) concentration was highest in the winter, the aerosol optical depth (AOD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM2.5 measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM2.5. Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM2.5 measurements.  相似文献   
108.
This is an overview of the strategy used to describe the effects of a potential release from a radioactive waste repository on human exposure and future environments. It introduces a special issue of AMBIO, in which 13 articles show ways of understanding and characterizing the future. The study relies mainly on research performed in the context of a recent safety report concerning a repository for spent nuclear fuel in Sweden (the so-called SR-Site project). The development of a good understanding of on-site processes and acquisition of site-specific data facilitated the development of new approaches for assessment of surface ecosystems. A systematic and scientifically coherent methodology utilizes the understanding of the current spatial and temporal dynamics as an analog for future conditions. We conclude that future ecosystem can be inferred from a few variables and that this multidisciplinary approach is relevant in a much wider context than radioactive waste.  相似文献   
109.
Results from dispersion models which are routinely used for regulatory purposes do not reflect the uncertainties which are Inherent In the input data. To remedy this, a formula for propagating measurement uncertainties of emission rate, wind speed, wind direction, horizontal dispersion parameter, vertical dispersion parameter, effective emission height, and mixing depth is derived for EPA’s Industrial Source Complex Short Term (ISCST) Gaussian dispersion model for the simple case of a single stack-type source and nonbuoyant plume. Values for the uncertainties of the input variables are chosen and used to calculate ambient concentration uncertainties. These calculated uncertainties are compared with the standard deviation of ambient concentrations calculated from 2500 input data sets for each of four stability classes and three downwind distances, which were randomly altered to simulate the effects of measurement uncertainty. The calculated uncertainties do not differ significantly from the standard deviations of the randomized calculations for input data uncertainties as high as 30 percent and Stability Classes A-C. The calculated uncertainties overestimate the actual uncertainty of model calculations for input data uncertainties greater than 20 percent for Stability Class D.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号