首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   4篇
  国内免费   13篇
安全科学   14篇
废物处理   31篇
环保管理   29篇
综合类   37篇
基础理论   38篇
污染及防治   80篇
评价与监测   16篇
社会与环境   1篇
灾害及防治   1篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   7篇
  2014年   11篇
  2013年   20篇
  2012年   13篇
  2011年   24篇
  2010年   8篇
  2009年   12篇
  2008年   23篇
  2007年   17篇
  2006年   17篇
  2005年   18篇
  2004年   9篇
  2003年   10篇
  2002年   7篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1979年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
191.
Towards a Simple Indicator of Biodiversity   总被引:1,自引:0,他引:1  
Policy makers in Canada have suggested that the scientific community should develop an indicator of biodiversity change that can be implemented quite quickly without a major new investment in monitoring systems. We propose that such an indicator can be developed from the theory of species gradients in community ecology. The term 'species gradients' refers to the increasing diversity of species through time under stable conditions, and the increasing diversity of species with the increased use of available resources. This theory is reviewed under four different headings: evolutionary ecology, the energy theory, the resource productivity theory and the thermodynamic mechanism. The theoretical arguments provide a basis to propose detection of the 'leaky ecosystem' as an indicator of biodiversity. We propose that it is possible to detect the leaky energetics of ecosystems by means of routinely available observations of outgoing longwave radiation.  相似文献   
192.
Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = ?0.70 for As and r = ?0.54 for Cd) and soil respiration (SR) (r = ?0.88 for As and r = ?0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.  相似文献   
193.
An ideal off-grid island can become 100% energy-sufficient if one installs renewable energy systems such as solar photovoltaic (PV) and wind turbine (WT) systems. However, the intermittent and uncertain nature of the power supply from renewable energy systems hinders a 100% autonomy level (AL) without an infinite energy storage capacity. The thermoeconomic installation limit (TEIL) of a PV/WT hybrid energy system was studied using hourly weather data and the energy demand profile for off-grid islands. An appropriate battery size for the TEIL was also determined. Given the current installation cost of the hybrid energy system and the battery unit, the AL for a PV/WT hybrid energy system at the TEIL is calculated to be approximately 70%. Above the limit, the size of the energy storage unit and, correspondingly, the total annual cost of the PV/WT hybrid energy system increase sharply.  相似文献   
194.
Moon HS  Shin do Y  Nam K  Kim JY 《Chemosphere》2008,73(5):723-728
The long-term performance of a sulfur-based reactive barrier system was evaluated using autotrophic denitrification in a large-scale column. A bacterial consortium, containing autotrophic denitrifiers attached on sulfur particles, serving as an electron donor, was able to transform 60mgNL(-1) of nitrate into dinitrogen. In the absence of phosphate, the consortium was unable to remove nitrate, but after the addition of phosphate, nitrate removal was readily evident. Once the column operation had stabilized, seepage velocities of 1.0x10(-3) and 0.5x10(-3)cms(-1), corresponding to hydraulic residence times of 24 and 48h, respectively, did not affect the nitrate removal efficiency, as determined by the nitrate concentration in the effluent. However, data on the nitrate, nitrite and sulfate distribution along the column indicated differential transformation patterns with column depths. Based on the dinitrogen concentration in the total gas collected, the denitrification efficiency of the tested column was estimated to be more than 95%. After 500d operation, the hydrodynamic characteristics of the column slightly changed, but these changes did not inhibit the nitrate removal efficiency. Data from a bacterial community analysis obtained from four parts of the column demonstrated the selective a spatial distribution of predominant species depending on available electron acceptors or donors.  相似文献   
195.
Ren X  Lee YJ  Han HJ  Kim IS 《Chemosphere》2008,74(1):84-88
Tris-(2-chloroethyl)-phosphate (TCEP) is a typical organophosphate flame retardant and has been designated as a micropollutant in aquatic environment. However, the potential effect of TCEP at environmental concentration is mostly unknown. Thus, the purpose of this study was to investigate the renal effect of TCEP at environmental concentration using primary cultured rabbit renal proximal tubule cells (PTCs). The results showed that TCEP at 10 mg L(-1) decreased cell viability, 84.2% of the control, but increased lactate dehydrogenase, 150% fold of the control. TCEP at 10 mg L(-1) also inhibited expression of CDK4, cyclin D1, CDK2, and cyclin E (79.3%, 77.7%, 73.3%, and 67.8% of the control, respectively), but increased expression of p21(WAF/Cip1) and p27(Kip1) (167.7% and 141.3% of the control, respectively). TCEP decreased DNA synthesis and cell number, 77% and 70% of the control, respectively. Through study of cell viability, cell damage, cell cycle regulator expression, DNA synthesis and cell number, TCEP at 10 microg L(-1) only affected the cells that TCEP increased expression of p21(WAF/Cip1) and p27(Kip1), 118.6% and 121.5% of the control, respectively, but decreased DNA synthesis, 91.5% of the control. In conclusion, TCEP at 10 microg L(-1) significantly increased cell cycle regulatory protein expression (p21(WAF/Cip1) and p27(Kip1)), but slightly decreased DNA synthesis in primary cultured rabbit renal PTCs.  相似文献   
196.
Quality improvement of acidic soil (with an initial pH of approximately 4.5) with respect to soil pH, exchangeable cations, organic matter content, and maize growth was attempted using natural (NSF) and calcined starfish (CSF). Acidic soil was amended with NSF and CSF in the range of 1 to 10 wt.% to improve soil pH, organic matter content, and exchangeable cations. Following the treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, the maize growth experiment was performed with selected treated samples to evaluate the effectiveness of the treatment. The results show that 1 wt.% of NSF and CSF (700 and 900 °C) were required to increase the soil pH to a value higher than 7. In the case of CSF (900 °C), 1 wt.% was sufficient to increase the soil pH value to 9 due to the strong alkalinity in the treatment. No significant changes in soil pHs were observed after 7 days of curing and up to 3 months of curing. Upon treatment, the cation exchange capacity values significantly increased as compared to the untreated samples. The organic content of the samples increased upon NSF treatment, but it remains virtually unchanged upon CSF treatment. Maize growth was greater in the treated samples rather than the untreated samples, except for the samples treated with 1 and 3 wt.% CSF (900 °C), where maize growth was limited due to strong alkalinity. This indicates that the amelioration of acidic soil using natural and calcined starfish is beneficial for plant growth as long as the application rate does not produce alkaline conditions outside the optimal pH range for maize growth.  相似文献   
197.
Abstract

Microbial metal leaching from sewage sludge (2-9% w/v) was carried out with the iron-oxidizing bacterium Thiobacillus ferrooxidans. Measurements of pH, oxidation-reduction potential, and concentration of Fe2+ indicated that T. ferrooxidans was effective in removing metals from an incubation bath containing less than 5% sludge solids concentration. Specifically, Cu leaching was completely suppressed at a high solids concentration of 9% (w/v). Results indicated that the deactivation of T. ferrooxidans at a high sludge content was mainly due to the presence of inhibiting materials such as organic matter. A mixed culture of sulfur-oxidizing bacteria was obtained by enrichment from anaerobically digested sewage sludge to enhance the efficiency of the microbial leaching process. These bacteria were much more effective in metal leaching than was iron-oxidizing T. ferrooxidans. At 9% (w/v) solids concentration, the leaching efficiencies of Zn and Cu were 78% (2.66 g/kg dry sludge) and 59% (1.36 g/kg dry sludge), respectively. Therefore, when removing heavy metals from the anaerobically digested sewage sludge, the indigenous sulfur-oxidizing bacteria isolated in the current study were more efficient than T. ferrooxidans, especially at high sludge solids concentrations.  相似文献   
198.
The aim of the study was to isolate and characterize potential autochthonous bacteria for biomineralization of Pb in mine tailings. A total of four bacteria were isolated from the soil samples and assayed for tolerance to Pb and other heavy metals. Isolate KK1 exhibited maximum Pb resistance and was subsequently identified as Bacillus sp. based on the partial 16S rRNA gene sequences. The isolate KK1 reduced the Pb ions and did not harbor pbrT gene. Selective sequential extraction of bioaugmented soil revealed that the isolate significantly reduced (26%) the exchangeable fraction and increased (38%) the carbonate fraction of Pb. X-ray diffraction studies confirmed the role of bacterially induced calcite precipitation in the bioremediation of mine tailings. A significant increase in the urease (334%), DHO (dehydrogenase) (14%), and phosphatase (37%) activity was observed in the bioaugmented mine soil.  相似文献   
199.
To identify the application and development of country-specific parameters for methane emission estimations from solid-waste disposal sites, National Inventory Reports of 41 Annex I countries and National Communications of ten non-Annex I countries of the United Nations Framework Convention on Climate Change were analyzed. A first-order decay method was applied to 38 out of 41 Annex I countries and to five out of ten non-Annex I countries in national GHG inventory submissions up to 2012. Country-specific parameters were approximately 26 % of the total number of parameters used in the 38 Annex I countries and were mostly developed for degradable organic carbon and reaction constants that cover certain waste compositions. The UNFCCC encourages countries to develop more country-specific parameters reflecting the distinct characteristics of each country in which solid-waste disposal site is a key source. Depending on a country’s condition, a stepwise approach regarding the development of country-specific parameters needs to be done so as to improve the accuracy of methane emission estimates in the solid-waste disposal site category.  相似文献   
200.
In this study, variations of particulate matter (PM) concentrations in subway trains following installation of platform screen doors (PSDs) in the Seoul subway system were investigated. PM samples were collected in the trains on subway lines 1–8 before and after installation of PSDs. It was found that the mean PM10 concentration in the trains after PSDs installation increased significantly by 29.9% compared to that before installation. In particular, the increase of PM10 in line 6 was the highest at 103%. When the relationship between PM10 and PM2.5 was compared, coefficients of determination (r2) before and after PSDs installations were 0.696 and 0.169, respectively. This suggests that air mixing between the platform and the tunnel after PSDs installation was extremely restricted. In addition, the indoor/outdoor PM10 ratio following PSDs installation increased from 1.32 to 2.97 relative to the period with no installed PSDs. Furthermore, this study revealed that PM levels in subway trains increased significantly after all underground PSDs were put in use. Several potential factors were examined that could result in this PM increase, such as train ventilation systems, operational conditions, passenger volume, subway depth, and the length of underground segments.
ImplicationsPM10 concentrations inside the subway trains increased after PSDs installation. This indicates that air quality in trains was very seriously impacted by PSDs. PM10 levels were also influenced by the tunnel depth and length of the underground segments. To prevent the adverse effect on human health by PM10 emitted from the tunnel, an applicable ventilation system to reduce PM10 is required inside trains and tunnels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号