首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   4篇
  国内免费   17篇
安全科学   15篇
废物处理   44篇
环保管理   42篇
综合类   41篇
基础理论   75篇
污染及防治   111篇
评价与监测   30篇
社会与环境   6篇
灾害及防治   3篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   1篇
  2019年   6篇
  2018年   14篇
  2017年   9篇
  2016年   18篇
  2015年   7篇
  2014年   13篇
  2013年   34篇
  2012年   27篇
  2011年   29篇
  2010年   13篇
  2009年   17篇
  2008年   36篇
  2007年   25篇
  2006年   25篇
  2005年   25篇
  2004年   13篇
  2003年   12篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1979年   1篇
排序方式: 共有367条查询结果,搜索用时 234 毫秒
321.
Park D  Yun YS  Ahn CK  Park JM 《Chemosphere》2007,66(5):939-946
The dead biomass of the brown seaweed, Ecklonia sp., is capable of reducing toxic Cr(VI) into less toxic or nontoxic Cr(III). However, little is known about the mechanism of Cr(VI) reduction by the biomass. The objective of this work was to develop a kinetic model for Cr(VI) biosorption, for supporting our mechanism. The reduction rate of Cr(VI) increased with increasing total chromate concentration, [Cr(VI)], and equivalent concentration of organic compounds, [OCs], and decreasing solution pH. It was found that the reduction rate of Cr(VI) was proportional to [Cr(VI)] and [OCs], suggesting the simple kinetic equation -d[Cr(VI)]/dt=k[Cr(VI)][OCs]. When considering the consumption of organic compounds due to the oxidation by Cr(VI), an average rate coefficient of 9.33 (+/-0.65)microM(-1)h(-1) was determined, at pH 2. Although the function of the pH could not be expressed in a mechanistic manner, an empirical model able to describe the pH dependence was obtained. It is expected that the developed rate equation could likely be used for design and performance predictions of biosorption processes for treating chromate wastewaters.  相似文献   
322.
A novel biomonitoring system using microbial fuel cells   总被引:2,自引:0,他引:2  
A novel biomonitoring system using microbial fuel cells for detecting the inflow of toxic substances into water systems has been developed for the purpose of on-site and on-line monitoring. The characteristics of electric current generation by electrochemically-active bacteria were conveniently monitored using a microbial fuel cell format and a computer-controlled potentiometer. When toxic substances (an organophosphorus compound, Pb, Hg, and PCBs) were added to the microbial fuel cell, rapid decreases in the current were observed. The inhibition ratios caused by inflow of these toxic substances (1 mg l(-1)) were 61%, 46%, 28% and 38%, respectively, when compared to the control, and generally increased in proportion to the addition time and concentration of toxic substances. When real wastewater was applied from a local wastewater treatment plant, more significant current decreases and higher inhibition ratios were observed following the introduction of toxic substances than in the laboratory tests. For example, the inhibition ratio was 76% on addition of a 1 mg l(-1) Cd and 1 mg l(-1) Pb mixture. Application of the microbial fuel cell for pollutant biomonitoring is discussed.  相似文献   
323.
324.
Isoxaflutole is a preemergence herbicide that has been marketed as a substitute for atrazine. It is rapidly transformed to a more stable and soluble diketonitrile degradate (DKN) after field application and can further degrade to a benzoic acid degradate (BA) within soil. However, no previous research has been conducted to investigate DKN and BA sorption to metal oxide minerals. The primary objective of this research was to elucidate the interactions of DKN and BA with synthetic hydrous aluminum and iron oxides (HAO and HFO, respectively) to understand how variably charged minerals may influence adsorption of these compounds in soil. The herbicide degradates did adsorb to HAO and HFO, and the data were well described by the Freundlich model (R2 > 0.91), with Nvalues ranging from 0.89 to 1.2. Adsorption isotherms and Kd values demonstrate that BA is adsorbed to HFO to a greater extent than other degradate-mineral combinations that were studied. The degree of hysteresis between adsorption/desorption isotherms was characterized as slight (hysteresis index values < 1.7), suggesting weak DKN and BA retention to HFO and HAO oxide surfaces. Degradate adsorption was observed to greatly diminish as suspension pH increased. Attenuated total reflectance-Fourier transform infrared spectra show no evidence that DKN or BA adsorb to mineral surfaces as inner-sphere complexes under hydrated conditions. Instead DKN and BA adsorb to positively charged metal oxide surfaces as outer-sphere or diffuse ion swarm complexes via electrostatic attraction. This research indicates that metal oxides may serve as important retardants for DKN and BA migration through acidic soils enriched with aluminum and iron oxides.  相似文献   
325.
The main objective of this study is to develop an eco-friendly and a large recycling technique of flotation Tailings from korea (TK) from metal mines as construction materials such as admixtures for high-fluidity concrete (HFC). TK used in this study was obtained from the Korea Molybdenum Corporation in operation. TK was used as the alternative material to adjust flowability and viscosity of HFC in the form of powder agent which enables adjustment of concrete compressive strength. In this study, we have performed concrete rheological tests and concrete flowability tests to obtain the quality characteristics of TK for using as the admixture in producing HFC. The results indicated that the adequate mix ratio of cement to TK should be 8:2 (vol%). It is more effective to use the TK as admixture to control flowability, viscosity and strength of HFC than the normal concrete. It was found that TK could be recycled construction materials in bulk such as admixture for HFC, in terms of the economic and eco-friendly aspects.  相似文献   
326.
This study examines the adsorption isotherms, kinetics and mechanisms of Pb2+ sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb2+ in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb2+ with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca2+ and PO4 3? concentrations during the metal sorption processes. The Pb2+ sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb+. The sorption isotherm results indicated that Pb2+ sorption onto the Langmuir and Freundlich constant q max and K F is 9.52 and 8.18 mg g?1, respectively. Sorption kinetics results indicated that Pb2+ sorption onto WCBP was pseudo-second-order rate constants K 2 was 1.12 g mg?1 h?1. The main mechanism is adsorption or surface complexation (≡POPb+: 61.6%), co-precipitation or ion exchange [Ca3.93 Pb1.07 (PO4)3 (OH): 21.4%] and other precipitation [Pb 50 mg L?1 and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb2+ removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb2+ indicates its potential as another promising way to remediate Pb2+-contaminated media.  相似文献   
327.
The characteristics of Hg wet deposition were investigated in a rural area of Korea from August 2006 to July 2008. The volume weighted mean (VWM) Hg(T) concentration and cumulative Hg(T) flux were 8.8 ng L(-1) and 9.4 μg m(-2) per year, respectively. The VWM Hg(T) concentration varied seasonally, similar to the seasonal pattern in atmospheric Hg(p) concentration. The enhancement of both VWM Hg(T) and atmospheric Hg(p) concentrations in spring and winter was likely caused by the long-range transport of Hg from China. Monthly VWM Hg(T) and atmospheric Hg(p) concentrations were well correlated (R(2) = 0.36); however, there was no correlation between VWM Hg(T) and RGM (reactive gaseous mercury) concentrations, suggesting that Hg(p) was responsible for the majority of the Hg in wet deposition at this site. The VWM Hg(T) concentration in snow was statistically higher than in rain. In addition, the atmospheric Hg(p) concentration appeared to be elevated for snow events as well. This suggests that both elevated Hg(p) concentrations and the enhanced scavenging efficiency of snow for Hg(p) were responsible for the elevated VWM Hg(T) concentrations measured during snow events.  相似文献   
328.
Environmental Science and Pollution Research - Pesticides are emergent toxins often identified in aquatic environments. In the present study, microplasma was employed to reduce the pesticide...  相似文献   
329.
This paper examines effectiveness of a regulatory enforcement organization (Major industrial Accident Prevention Center, MAPC), and a grading system for implementation of the Process Safety Management (PSM) regulation in Korea. A lot of chemical installations have been built in Korea since the 1960s. The frequent occurrence of major industrial accidents had made people's concerns grow. The Korean government enacted PSM regulations in 1996 in order to curb these accidents.However, a key question is how to make sure companies comply with the PSM regulations. In order to improve company’ compliance with PSM regulations the Ministry of Employment and Labor (MOEL) responsible for the regulation introduced a grading management system in 2001 and then established special supervisory centers for enforcement of PSM regulations in 2005. This paper reviews the role and effectiveness of the system in term of PSM enforcement. The author found that the grade-based approach has encouraged employers to implement the requirements of the PSM regulations. MAPCs play an effective role in enhancing enforcement performance. Although the more chemical plants have been established in Korea, the fewer major industrial accidents have occurred since the introduction of the system. The results may be useful for the policy maker to build an effective and efficient enforcement system.  相似文献   
330.
Catalytic pyrolysis of low-density polyethylene (LDPE) was investigated using various fly ash-derived silica–alumina catalysts (FSAs). FSAs were prepared by a simple activation method that basically includes NaOH treatment of fly ash by a fusion method, followed by an aging process. A series of LDPE pyrolysis experiments was conducted and the catalytic performance of FSAs was assessed in terms of the degradation temperature and the simulated boiling point distribution of the liquid products. The effects of synthesis conditions such as NaOH/fly ash weight ratio and aging time were examined by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET) surface area analyzer, and scanning electron microscope to clarify the controlling factors affecting the catalytic activity. To obtain catalyst with high activity, it is necessary to produce sufficient silica and alumina species that can be easily co-precipitated into solid acid catalyst by destruction of the fly ash structure and to optimize the activation time for catalyst synthesis to prevent the transformation into inactive phases. The catalytic performance of FSA obtained from optimal conditions was equivalent to that of commercial catalysts, demonstrating the effectiveness of the catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号