首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14415篇
  免费   171篇
  国内免费   119篇
安全科学   469篇
废物处理   545篇
环保管理   2342篇
综合类   2350篇
基础理论   3719篇
环境理论   9篇
污染及防治   3556篇
评价与监测   891篇
社会与环境   721篇
灾害及防治   103篇
  2023年   76篇
  2022年   119篇
  2021年   124篇
  2020年   106篇
  2019年   126篇
  2018年   213篇
  2017年   196篇
  2016年   309篇
  2015年   245篇
  2014年   328篇
  2013年   1148篇
  2012年   452篇
  2011年   639篇
  2010年   524篇
  2009年   600篇
  2008年   638篇
  2007年   645篇
  2006年   562篇
  2005年   487篇
  2004年   444篇
  2003年   459篇
  2002年   431篇
  2001年   524篇
  2000年   387篇
  1999年   247篇
  1998年   169篇
  1997年   189篇
  1996年   205篇
  1995年   238篇
  1994年   226篇
  1993年   198篇
  1992年   154篇
  1991年   194篇
  1990年   196篇
  1989年   176篇
  1988年   144篇
  1987年   138篇
  1986年   153篇
  1985年   110篇
  1984年   142篇
  1983年   137篇
  1982年   146篇
  1981年   135篇
  1980年   111篇
  1979年   130篇
  1978年   83篇
  1977年   86篇
  1975年   79篇
  1973年   77篇
  1972年   73篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
23.
Certain hydrothermal vent invertebrates, e.g. Riftia pachyptila and Calyptogena magnifica, are clearly established as harboring dense populations of chemoautotrophic sulfur bacteria in specialized tissues. By contrast, the physiological characteristics of the abundant intracellular gill symbiont of the vent mussel Bathymodiolus thermophilus have been questioned. The low activities of enzymes diagnostic for CO2 fixation (Calvin cycle) and for sulfur-driven energy generation, as measured by other investigators, have been attributed to bacterial contamination of the gill surface. Based on research at the Galápagos Rift hydrothermal vents in 1988 and subsequent laboratory experiments, the current study confirms that the B. thermophilus symbiont is a psychrophile for which thiosulfate and sulfide stimulate CO2 fixation. It strongly indicates that the symbiont is a chemoautotroph by establishing the following: (1) Sulfide and thiosulfate can stimulate CO2 fixation by partially purified symbionts by up to 43-fold and 120-fold, respectively; (2) the ribulose-1,5-bisphosphate carboxylase/oxygenase activity of the symbiont is sufficient to account for its sulfide- or thiosulfate-stimulated CO2 incorporation; (3) the symbiont's molar growth yield on thiosulfate, as judged by CO2 incorporation, is indistinguishable from that of free-living chemoautotrophs. Due to the high protein-degrading activity of B. thermophilus gill lysate, it is also suggested that host lysis of symbionts plays a more important role in the nutrition of the vent mussel than in R. pachyptila or C. magnifica, for which no comparable protein-degrading activity was found.  相似文献   
24.
25.
26.
27.
The brittle stars Amphiura filiformis (Müller) and Ophiura albida (Forbes) were exposed to different oxygen saturations (100, 10, 5, 3, and <1% oxygen saturation) and to physiological anoxia (<1% oxygen saturation) at different total sulfide concentrations (0, 2, 20, 200 μM). The mortality was followed during experiments and the median survival time (LT50) was determined. The infaunal A. filiformis had a significantly higher tolerance to both hypoxia and sulfide than did the epibenthic O. albida. After exposure to 10% oxygen saturation for a month, only 2.0% A. filiformis and 0% O. albida were dead. In oxygen saturations <1% A. filiformis and O. albida had a LT50 of 7.5 and 2.5 d, respectively. The presence of even very small concentrations of sulfide decreased the survival significantly. Sulfide is shown to be the key factor for the survival of the two species. Received: 11 October 1996 / Accepted: 12 November 1996  相似文献   
28.
Because the classification of extant and fossil articulate brachiopods is based largely upon shell characters observable in fossils, it identifies morphotaxa whose biological status can, in practice, best be inferred from estimates of genetic divergence. Allozyme polymorphism and restriction fragment length polymorphism of mitochondrial DNA (mtDNA RFLP) have been used to show that nuclear and mitochondrial genetic divergence between samples of the cancellothyridid brachiopods Terebratulina septentrionalis from Canada and T. retusa from Europe is compatible with biological speciation, but the genetic distances obtained were biased by methodological limitations. Here, we report estimates of divergence in 12S rDNA mitochondrial sequences within and between samples of these brachiopods. The sequence-based genetic distance between these samples (5.98ǂ.07% SE) is at least 10 times greater than within them and, since they also differ in a complex life-history trait, their species status is considered to be securely established. Divergence levels between 12S rDNA genes of three other cancellothyridids, T. unguicula from Alaska, T. crossei from near Japan, and Cancellothyris hedleyi from near Australia are higher than between the two North Atlantic species, and the mean nucleotide distance between all these cancellothyrids is similar to the mean distance between species of Littorina (Mollusca: Gastropoda). Sequences of both 12S and 16S genes from cancellothyridids and other short-looped brachiopod species show neither saturation nor lineage-specific rate differences and, when analysed with different outgroups, either separately or together, yield one unexpected, but well-supported, tree with Alaskan T. unguicula basal and C. hedleyi nested within Terebratulina, i.e. these genera are paraphyletic. A geologically dated divergence between Antarctic and New Zealand species of the short-looped brachiopod Liothyrella is used to calibrate the rate of 12S divergence at ca. 0.1% per million years (MY), and this rate is used to infer that T. septentrionalis and T. retusa have been diverging for ca. 60 MY and that they and T. unguicula have been diverging from their last common ancestor for ca. 100 MY. This indicates a Mesozoic origin for the present-day distribution of cancellothyridids and the basal position of T. unguicula suggests a possible North Pacific centre of origin, with separate Atlantic and Pacific radiations. The inclusion of Cancellothyris within Terebratulina also shows that adult shell characters such as umbo, foramen and symphytium shape, whilst probably indispensible for the practical classification of fossils, are not reliable guides to genealogy.  相似文献   
29.
30.
Most genetic surveys of captive and endangered populations are carried out with single gene characters bearing no direct relationship to life history or other features for which genetic variation needs to be maintained. Quantitative genetic estimates of heritable variation for life-history traits may be a more direct and appropriate measure of genetic variation for some conservation purposes. Furthermore, recent theoretical and empirical results indicate that genetic variation measured on these two levels may not be concordant. We analyzed heterozygosity at 41 allozyme loci and heritability for body weight in captive cotton-top tamarins ( Saguinus oedipus ) from the Marmoset Research Center of the Oak Ridge Associated Universities in order to compare these two levels of genetic variation. Cotton-top tamarins are a highly endangered species native to Colombia. Many animals currently reside in research facilities and zoological parks. A total of 106 animals were used in the isozyme survey, while data on 364 animals contributed to the quantitative genetic study of body weight. We found a very low average heterozygosity ( H = 1%) for this colony. Body weight was moderately and significantly heritable ( h 2 = 35%). This heritability is within the normal range for natural animal populations. The finding of biologically significant levels of heritability in a population with abnormally low allozyme heterozygosity illustrates the point that low levels of allozyme heterozygosity should not be taken as an indication of overall lack of genetic variation in important quantitative characters such as life-history traits. Genetic variation required for adaptation of species to future environmental challenges can exist despite low levels of enzyme heterozygosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号