首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2916篇
  免费   71篇
  国内免费   32篇
安全科学   156篇
废物处理   113篇
环保管理   788篇
综合类   278篇
基础理论   681篇
环境理论   2篇
污染及防治   702篇
评价与监测   171篇
社会与环境   109篇
灾害及防治   19篇
  2023年   16篇
  2022年   25篇
  2021年   30篇
  2020年   34篇
  2019年   38篇
  2018年   56篇
  2017年   59篇
  2016年   95篇
  2015年   62篇
  2014年   69篇
  2013年   307篇
  2012年   112篇
  2011年   163篇
  2010年   133篇
  2009年   135篇
  2008年   146篇
  2007年   150篇
  2006年   139篇
  2005年   78篇
  2004年   110篇
  2003年   102篇
  2002年   91篇
  2001年   56篇
  2000年   47篇
  1999年   45篇
  1998年   39篇
  1997年   39篇
  1996年   46篇
  1995年   53篇
  1994年   39篇
  1993年   42篇
  1992年   26篇
  1991年   30篇
  1990年   35篇
  1989年   23篇
  1988年   30篇
  1987年   25篇
  1986年   37篇
  1985年   22篇
  1984年   35篇
  1983年   28篇
  1982年   31篇
  1981年   31篇
  1980年   18篇
  1979年   18篇
  1978年   13篇
  1977年   10篇
  1976年   9篇
  1974年   8篇
  1972年   9篇
排序方式: 共有3019条查询结果,搜索用时 31 毫秒
81.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
82.
It is widely accepted that wetland ecosystems are under threat worldwide. Many communities are now trying to establish wetland rehabilitation programs, but are confounded by a lack of objective information on wetland condition or significance. In this study, a multi-criteria decision-making method, TOPSIS (the Technique for Order Preference by Similarity to Ideal Solution), was adapted to assist in the role of assessing wetland condition and rehabilitation priority in the Clarence River Catchment (New South Wales, Australia). Using 13 GIS data layers that described wetland character, wetland protection, and wetland threats, the wetlands were ranked in terms of condition. Through manipulation of the original model, the wetlands were prioritized for rehabilitation. The method offered a screening tool for the managers in choosing potential candidate wetlands for rehabilitation in a region.  相似文献   
83.
Management of animal manures to provide nutrients for crop growth has generally been based on crop N needs. However, because manures have a lower N/P ratio than most harvested crops, N-based manure management often oversupplies the crop-soil system with P, which can be lost into the environment and contribute to eutrophication of water bodies. We examined the effects of N- vs. P-based manure applications on N and P uptake by alfalfa (Medicago sativa L.), corn (Zea mays L.) for silage, and orchardgrass (Dactylis glomerata L.), leaching below the root zone, and accumulation of P in soil. Treatments included N- and P-based manure rates, with no nutrient input controls and inorganically fertilized plots for comparison. Nitrate concentrations in leachate from inorganic fertilizer or manure treatments averaged 14 mg NO(3)-N L(-1), and did not differ by nutrient treatment. Average annual total P losses in leachate did not exceed 1 kg ha(-1). In the top 5 cm of soil in plots receiving the N-based manure treatment, soil test P increased by 47%, from 85 to 125 mg kg(-1). Nitrogen- and P-based manure applications did not differ in ability to supply nutrients for crop growth, or in losses of nitrate and total P in leachate. However, the N-based manure led to significantly greater accumulation of soil test P in the surface 5 cm of soil. Surface soil P accumulation has implications for increased risk of off-field P movement.  相似文献   
84.
A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.  相似文献   
85.
This paper compiles a detailed set of in situ chemical oxidation (ISCO) lessons learned pertaining to design, execution, and safety based on global experiences over the last 20 years. While the benefits of a “correct” application are known (e.g., cost effectiveness, speed, permanence of treatment), history also provides examples of a variety of “incorrect” applications. These provide an opportunity to highlight recurring themes that resulted in failures. ISCO is, and will continue to provide, an important remedial tool for site remediation, particularly as a component of a multifaceted approach for addressing large and complex sites. Future success, however, requires an objective understanding of both the benefits and the limitations of the technology. The ability to learn from the mistakes of the past provides an opportunity to eliminate, or at least minimize, them in the future. Over the last 25 years of ISCO application, process understanding and knowledge have improved and evolved. This paper combines a thorough discussion of lessons learned through decades of ISCO implementation throughout all aspects of ISCO projects with an analysis of changes to the ISCO remediation market. By discussing the interplay of these two themes and providing recommendations from collective lessons learned, we hope to improve the future of safe, cost‐effective, and successful applications of ISCO.  相似文献   
86.
87.
Smart growth and sustainability planning have, in recent years, become central issues in planning discourse. Scholars have argued that planning capacity at the local government level is critical for smart growth planning, and that planners have a fundamental role to play in advancing local and regional sustainability. In this paper, we investigate the extent to which local planning capacity enables communities to promote more sustainable, smart growth residential development. Based on a 2013 survey of 38 county and 53 municipal governments in the state of Wisconsin, USA, this study finds that the majority of the sample communities have permitted residential developments characterized as transit-oriented, New Urbanist, mixed use, infill developments, or conservation subdivisions as alternatives to low-density, automobile-dependent conventional developments. The study also finds that jurisdictions with higher planning capacities are more likely to overcome significant barriers to more sustainable residential development.  相似文献   
88.
89.
Watershed simulation models such as the Soil & Water Assessment Tool (SWAT) can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of model outputs, that the calibrated models may not reflect actual watershed behavior. Thus, it is often advantageous to use “soft data” (i.e., qualitative knowledge such as expected denitrification rates that observed time series do not typically exist) to ensure that the calibrated model is representative of the real world. The primary objective of this study is to evaluate the efficacy of coupling SWAT‐Check (a post‐evaluation framework for SWAT outputs) and IPEAT‐SD (Integrated Parameter Estimation and Uncertainty Analysis Tool‐Soft & hard Data evaluation) to constrain the bounds of soft data during SWAT auto‐calibration. IPEAT‐SD integrates 59 soft data variables to ensure SWAT does not violate physical processes known to occur in watersheds. IPEAT‐SD was evaluated for two case studies where soft data such as denitrification rate, nitrate attributed from subsurface flow to total discharge ratio, and total sediment loading were used to conduct model calibration. Results indicated that SWAT model outputs may not satisfy reasonable soft data responses without providing pre‐defined bounds. IPEAT‐SD provides an efficient and rigorous framework for users to conduct future studies while considering both soft data and traditional hard information measures in watershed modeling.  相似文献   
90.
Urban ecosystems are often sources of nonpoint source (NPS) nitrogen (N) pollution to aquatic ecosystems. However, N export from urban watersheds is highly variable. Examples of densely urbanized watersheds are not well studied, and these may have comparatively low export rates. Commonly used metrics of landscape heterogeneity may obscure our ability to discern relationships among landscape characteristics that can explain these lower export rates. We expected that differences not often captured by these metrics in the relative cover of vegetation, structures, and impervious surfaces would better explain observed variation in N export. We examined these relationships during storms in residential watersheds. Contrary to expectations, land cover did not directly predict variation in N or water export. Instead, N export was strongly linked to drainage infrastructure density. Our research highlights the role of fine‐scaled landscape attributes, mainly infrastructure, in explaining patterns of N export from densely urbanized watersheds. Changes to hydrologic flow paths by infrastructure explained more variation in N export than land cover. Our findings support further development of landscape ecological models of urban N export that focus on hydrologic modification by infrastructure rather than traditional landscape measures such as land use, as indicators for evaluating patterns of NPS nitrogen pollution in densely urbanized watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号