首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19833篇
  免费   336篇
  国内免费   348篇
安全科学   747篇
废物处理   830篇
环保管理   3239篇
综合类   3136篇
基础理论   5056篇
环境理论   8篇
污染及防治   5112篇
评价与监测   1135篇
社会与环境   1111篇
灾害及防治   143篇
  2023年   96篇
  2022年   181篇
  2021年   188篇
  2020年   210篇
  2019年   173篇
  2018年   336篇
  2017年   302篇
  2016年   479篇
  2015年   370篇
  2014年   497篇
  2013年   1656篇
  2012年   685篇
  2011年   1017篇
  2010年   764篇
  2009年   869篇
  2008年   959篇
  2007年   992篇
  2006年   817篇
  2005年   674篇
  2004年   714篇
  2003年   644篇
  2002年   613篇
  2001年   693篇
  2000年   555篇
  1999年   353篇
  1998年   243篇
  1997年   256篇
  1996年   261篇
  1995年   312篇
  1994年   243篇
  1993年   245篇
  1992年   197篇
  1991年   207篇
  1990年   211篇
  1989年   201篇
  1988年   178篇
  1987年   155篇
  1986年   186篇
  1985年   160篇
  1984年   219篇
  1983年   169篇
  1982年   190篇
  1981年   181篇
  1980年   145篇
  1979年   163篇
  1978年   104篇
  1977年   107篇
  1974年   99篇
  1973年   92篇
  1972年   104篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
991.
The main goal of this study was to assess both mercury (Hg) accumulation and organs’ specific oxidative stress responses of gills, liver and kidney of Dicentrarchus labrax with emphasis on seasonality. Fish were collected in cold and warm periods in three stations: reference, moderated and highly contaminated sites. Our results showed that seasonal factors slightly influenced Hg accumulation between year periods (cold and warm) and strongly affected organs’ response basal levels. In contrast, seasonality seemed not to influence oxidative stress responses, since similar response patterns were obtained for both year periods, and moderate degree of antioxidant responses was obtained. Moreover, the oxidative stress profile may be attributed to Hg contamination degree, which showed organ-specific response and accumulation patterns. Hence, gills showed to be able to adapt to Hg contamination, and in opposition, kidney and liver demonstrated some vulnerability to Hg toxicity. The critical Hg concentrations indicated specific threshold limits for each organ. Overall, seasonality should be taken into account in monitoring programmes, helping to characterize the individuals’ reference values of response and thus to discriminate between the effects induced by natural causes or by contamination.  相似文献   
992.
This article aims to understand the radiation behavior within a photo-reactor, following the ISO 22197-1:2007 standard. The RADIANCE lighting simulation tool, based on the backward ray-tracing modeling method, is employed for a numerical computation of the radiation field. The reflection of the glass cover in the photo-reactor and the test sample influence the amount of irradiance received by the test-sample surface in the photo-reactor setup. The reflection of a white sample limits the irradiance reduction by the glass cover to 1.4 %, but darker samples can lead to an overestimation up to 9.8 % when used in the same setup. This overestimation could introduce considerable error into the interpretation of experiments. Furthermore, this method demonstrates that the kinetics for indoor photocatalytic pollutant degradation can be refined through radiation modeling of the reactor setup. In addition, RADIANCE may aid in future modeling of the more complex indoor environment where radiation affects significantly photocatalytic activity.  相似文献   
993.
994.
Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a “fingerprint” of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8–2.0 ppmv). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression.

Implications: Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents.  相似文献   

995.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range below 2.5 μm aerodynamic diameter (PM2.5; fine particles). The network peaked at more than 260 sites in 2005. In response to the 1999 Regional Haze Rule and the need to better understand the regional transport of PM, EPA also augmented the long-existing Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility monitoring network in 2000, adding nearly 100 additional IMPROVE sites in rural Class 1 Areas across the country. Both networks measure the major chemical components of PM2.5 using historically accepted filter-based methods. Components measured by both networks include major anions, carbonaceous material, and a series of trace elements. CSN also measures ammonium and other cations directly, whereas IMPROVE estimates ammonium assuming complete neutralization of the measured sulfate and nitrate. IMPROVE also measures chloride and nitrite. In general, the field and laboratory approaches used in the two networks are similar; however, there are numerous, often subtle differences in sampling and chemical analysis methods, shipping, and quality control practices. These could potentially affect merging the two data sets when used to understand better the impact of sources on PM concentrations and the regional nature and long-range transport of PM2.5. This paper describes, for the first time in the peer-reviewed literature, these networks as they have existed since 2000, outlines differences in field and laboratory approaches, provides a summary of the analytical parameters that address data uncertainty, and summarizes major network changes since the inception of CSN.
ImplicationsTwo long-term chemical speciation particle monitoring networks have operated simultaneously in the United States since 2001, when the EPA began regular operations of its PM2.5 Chemical Speciation Monitoring Network (IMPROVE began in 1988). These networks use similar field sampling and analytical methods, but there are numerous, often subtle differences in equipment and methodologies that can affect the results. This paper describes these networks since 2000 (inception of CSN) and their differences, and summarizes the analytical parameters that address data uncertainty, providing researchers and policymakers with background information they may need (e.g., for 2018 PM2.5 designation and State Implementation Plan process; McCarthy, 2013) to assess results from each network and decide how these data sets can be mutually employed for enhanced analyses. Changes in CSN and IMPROVE that have occurred over the years also are described.  相似文献   
996.
Air pollution has been an increasing concern within the Kingdom of Saudi Arabia and other Middle Eastern countries. In this work the authors present an analysis of daily ozone (O3), nitrogen oxide (NOx), and particulate matter (<10 μm aerodynamic diameter; PM10) concentrations for two years (2010 and 2011) at sites in and around the coastal city of Jeddah, as well as a remote background site for comparison. Monthly and weekly variations, along with their implications and consequences, were also examined. O3 within Jeddah was remarkably low, and exhibited the so-called weekend effect—elevated O3 levels on the weekends, despite reduced emissions of O3 precursors on those days. Weekend O3 increases averaged between 12% and 14% in the city, suggesting that NOx/volatile organic compound (VOC) ratios within cities such as Jeddah may be exceptionally high. Sites upwind or far removed from Jeddah did not display this weekend effect. Based on these results, emission control strategies in and around Jeddah must carefully address NOx/VOC ratios so as to reduce O3 at downwind locations without increasing it within urban locations themselves. PM10 concentrations within Jeddah were elevated compared with North American cites of similar climatology, though comparable to other large cities within the Middle East.
Implications:Daily concentrations of O3, PM10, and NOx in and around the city of Jeddah, Saudi Arabia, are analyzed and compared with those of other reference cities. Extremely low O3 levels, along with a significant urban weekend effect (higher weekend O3, despite reduced NOx concentrations), is apparent, along with high levels of PM10 within the city. Urban O3 in Jeddah was found to be lower than that of other comparable cities, but the strong weekend effect suggests that care must be taken to reduce downwind O3 levels without increasing them within the city itself. Further research into the emissions and chemistry contributing to the reduced O3 levels within the city is warranted.  相似文献   
997.
Gold (Au) accounts for only 0.004 g/ton of the earth's crust and is the most desired element. With an average annual world production of approximately 2,500 tons, the current methods of Au mining in developing countries cause major environmental issues. These issues vary from deforestation to cyanide and mercury (Hg) contamination. This article presents several cases of environmental catastrophes caused by Au mining in different regions of the world (Africa, the Middle East, Eastern Europe, and South America). It discusses the currently available processes for the large-scale extraction of metallic Au grains and supports the need for an alternative sustainable process.  相似文献   
998.
Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.  相似文献   
999.
Both the ‘cascade model’ of ecosystem service provision and the Driver-Pressure-State-Impact-Response framework individually contribute to the understanding of human–nature interactions in social–ecological systems (SES). Yet, as several points of criticism show, they are limited analytical tools when it comes to reproducing complex cause–effect relationships in such systems. However, in this paper, we point out that by merging the two models, they can mutually enhance their comprehensiveness and overcome their individual conceptual deficits. Therefore we closed a cycle of ecosystem service provision and societal feedback by rethinking and reassembling the core elements of both models. That way, we established a causal sequence apt to describe the causes of change to SES, their effects and their consequences. Finally, to illustrate its functioning we exemplified and discussed our approach based on a case study conducted in the Alpujarra de la Sierra in southern Spain.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0651-y) contains supplementary material, which is available to authorized users.  相似文献   
1000.
The concept of climate compatible development (CCD) is increasingly employed by donors and policy makers seeking ‘triple-wins’ for development, adaptation and mitigation. While CCD rhetoric is becoming more widespread, analyses drawing on empirical cases that present triple-wins are sorely lacking. We address this knowledge gap. Drawing on examples in rural sub-Saharan Africa, we provide the first glimpse into how projects that demonstrate triple-win potential are framed and presented within the scientific literature. We identify that development projects are still commonly evaluated in terms of adaptation or mitigation benefits. Few are framed according to their benefits across all three dimensions. Consequently, where triple-wins are occurring, they are likely to be under-reported. This has important implications, which underestimates the co-benefits that projects can deliver. A more robust academic evidence base for the delivery of triple-wins is necessary to encourage continued donor investment in activities offering the potential to deliver CCD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号