首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3326篇
  免费   69篇
  国内免费   30篇
安全科学   172篇
废物处理   116篇
环保管理   802篇
综合类   557篇
基础理论   732篇
环境理论   3篇
污染及防治   738篇
评价与监测   175篇
社会与环境   111篇
灾害及防治   19篇
  2023年   16篇
  2022年   22篇
  2021年   30篇
  2020年   31篇
  2019年   38篇
  2018年   57篇
  2017年   64篇
  2016年   95篇
  2015年   61篇
  2014年   68篇
  2013年   319篇
  2012年   110篇
  2011年   163篇
  2010年   128篇
  2009年   138篇
  2008年   147篇
  2007年   155篇
  2006年   134篇
  2005年   83篇
  2004年   114篇
  2003年   103篇
  2002年   94篇
  2001年   61篇
  2000年   46篇
  1999年   54篇
  1998年   54篇
  1997年   45篇
  1996年   47篇
  1995年   57篇
  1994年   44篇
  1993年   46篇
  1992年   32篇
  1991年   39篇
  1990年   42篇
  1989年   30篇
  1988年   35篇
  1987年   25篇
  1986年   39篇
  1985年   22篇
  1984年   38篇
  1983年   31篇
  1982年   32篇
  1981年   33篇
  1980年   18篇
  1979年   18篇
  1978年   16篇
  1963年   13篇
  1927年   11篇
  1926年   15篇
  1925年   12篇
排序方式: 共有3425条查询结果,搜索用时 390 毫秒
861.
While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zero‐valent iron (ZVI)–based technologies, such as nanoscale iron and bimetallic ZVI, as well as naturally occurring reduced minerals incorporating dual‐valent iron (DVI), such as magnetite, green rust, and iron sulfides that are capable of dechlorinating solvents. A more recent area of development in ISCR has been in combining biological and abiotic processes. There are several ways in which biological and abiotic processes can be combined. First, the interaction between the two may be “causative.” For example, the Air Force Center for Engineering and the Environment's biogeochemical reductive dechlorination (BiRD) technology combines a mulch barrier with hematite and gypsum to create an iron‐sulfide‐based reducing zone. Biodegradation under sulfate‐reducing conditions produces sulfide that combines with the hematite to form iron sulfides. As such, the BiRD technology is “causative”; the biological processes create reducing minerals. The biological generation of other reducing minerals such as magnetite, siderite, and green rust is feasible and is, with magnetite, observed in nature at some petroleum sites. A second type of interaction between abiotic and biotic processes is “synergistic.” For example, biological processes can enhance the activity of reduced metals/minerals. This is the basis of the EHC® ISCR technologies, which combine ZVI with a (slowly) degradable carbon substrate. This combination rapidly creates buffered, strongly reducing conditions, which result in more complete solvent degradation (i.e., direct mineralization). The extent and level of reducing activity commonly observed are much greater when both the carbon substrate and the ZVI are present. When the carbon substrate is expended, the reducing activity due to ZVI alone is much less. The understanding of biogeochemical processes and their impact on abiotic processes is still developing. As that understanding develops, new and improved methods will be created to enhance volatile organic compound destruction. © 2009 Wiley Periodicals, Inc.  相似文献   
862.
建立的粉尘在巷道中的传递方程是一个二维平流扩散输运方程。在巷道顶底板为吸收壁的条件下,导出了粉尘浓度分布函数。传统的工业沉降室沉降效率公式(横向混合模型)只是论文所列方程的一个特例。降低紊流强度和减小紊流扩散系数和纵向弥散系数均可提高沉降效率  相似文献   
863.
864.
865.
866.
Nectar guides can enhance pollinator efficiency and plant fitness by allowing pollinators to more rapidly find and remember the location of floral nectar. We tested if a radiating nectar guide around a nectary would enhance the ability of naïve bumble bee foragers to find nectar. Most experiments that test nectar guide efficacy, specifically radiating linear guides, have used guides positioned around the center of a radially symmetric flower, where nectaries are often found. However, the flower center may be intrinsically attractive. We therefore used an off-center guide and nectary and compared “conjunct” feeders with a nectar guide surrounding the nectary to “disjunct” feeders with a nectar guide separated from the nectary. We focused on the innate response of novice bee foragers that had never previously visited such feeders. We hypothesized that a disjunct nectar guide would conflict with the visual information provided by the nectary and negatively affect foraging. Approximately, equal numbers of bumble bees (Bombus impatiens) found nectar on both feeder types. On disjunct feeders, however, unsuccessful foragers spent significantly more time (on average 1.6-fold longer) searching for nectar than any other forager group. Successful foragers on disjunct feeders approached these feeders from random directions unlike successful foragers on conjunct feeders, which preferentially approached the combined nectary and nectar guide. Thus, the nectary and a surrounding nectar guide can be considered a combination of two signals that attract naïve foragers even when not in the floral center.  相似文献   
867.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   

868.
Regional Environmental Change - Plausible scenarios of future land use derived from model projections may differ substantially from what is actually desired by society, and identifying such...  相似文献   
869.
Environmental Science and Pollution Research - A continuous flow filtration system was designed to identify and quantify the removal mechanisms of Cyanobacteria (Microcystis aeruginosa) by...  相似文献   
870.
Tropical forests are experiencing enormous threats from deforestation and habitat degradation. Much knowledge of the impacts of these land-use changes on tropical species comes from studies examining patterns of richness and abundance. Demographic vital rates (survival, reproduction, and movement) can also be affected by land-use change in a way that increases species vulnerability to extirpation, but in many cases these impacts may not be manifested in short-term changes in abundance or species richness. We conducted a literature review to assess current knowledge and research effort concerning how land-use change affects species vital rates in tropical forest vertebrates. We found a general paucity of empirical research on demography across taxa and regions, with some biases toward mammals and birds and land-use transitions, including fragmentation and agriculture. There is also considerable between-species variation in demographic responses to land-use change, which could reflect trait-based differences in species sensitivity, complex context dependencies (e.g., between-region variation), or inconsistency in methods used in studies. Efforts to improve understanding of anthropogenic impacts on species demography are underway, but there is a need for increased research effort to fill knowledge gaps in understudied tropical regions and taxa. The lack of information on demographic impacts of anthropogenic disturbance makes it difficult to draw definite conclusions about the magnitude of threats to tropical ecosystems under anthropogenic pressures. Thus, determining conservation priorities and improving conservation effectiveness remains a challenge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号