首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22969篇
  免费   281篇
  国内免费   149篇
安全科学   645篇
废物处理   982篇
环保管理   3405篇
综合类   3602篇
基础理论   6351篇
环境理论   12篇
污染及防治   5877篇
评价与监测   1425篇
社会与环境   949篇
灾害及防治   151篇
  2022年   146篇
  2021年   162篇
  2019年   159篇
  2018年   282篇
  2017年   297篇
  2016年   482篇
  2015年   354篇
  2014年   521篇
  2013年   1859篇
  2012年   661篇
  2011年   941篇
  2010年   777篇
  2009年   777篇
  2008年   942篇
  2007年   990篇
  2006年   871篇
  2005年   733篇
  2004年   734篇
  2003年   709篇
  2002年   677篇
  2001年   801篇
  2000年   607篇
  1999年   364篇
  1998年   296篇
  1997年   309篇
  1996年   315篇
  1995年   373篇
  1994年   336篇
  1993年   316篇
  1992年   296篇
  1991年   304篇
  1990年   323篇
  1989年   296篇
  1988年   273篇
  1987年   258篇
  1986年   252篇
  1985年   219篇
  1984年   286篇
  1983年   233篇
  1982年   298篇
  1981年   242篇
  1980年   201篇
  1979年   214篇
  1978年   194篇
  1977年   161篇
  1975年   149篇
  1974年   164篇
  1973年   168篇
  1972年   156篇
  1971年   151篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
831.
832.
A passive sampling device based on the principle of diffusion has been developed for the determination of formaldehyde in ambient air. The sampler consists of a capped glass tube (with approximate dimensions of 2.4 × 9 cm) containing a glass-fiber filter treated with NaHSO3. In the field, the device collects a sample by being uncapped for a specified sampling time. After being recapped and returned to the laboratory, the filter is analyzed by the chromotropic acid (CTA) method. Laboratory validation studies were conducted by exposing the sampling devices for 1 week to dry formaldehyde gas generated by passing trioxane vapor over an acid catalyst bed. In these tests, formaldehyde concentrations ranged from 0.05 to 0.80 mL/m3. Reproducibility was excellent, with relative standard deviations averaging 5.4% for five constant concentrations. The lower detection limit was determined to be 3.6 mL/m3 h. In an occupational environment an 8-h sample would be sufficient to detect compliance with the OSHA permissible exposure limit of 3 mL/m3; in a residential environment a 1-week sample would allow detection of 0.025 mL/m3 for indoor air quality audits.  相似文献   
833.
834.
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes.  相似文献   
835.
A two-dimensional reservoir toxics model is essential to establishing effective water resources management and protection. In a reservoir, the fate of a toxic chemical is closely connected with flow regimes and circulation patterns. To better understand the kinetic processes and persistence and predict the dissipation of toxic contaminants in the reservoir during a spill or storm runoff event, a toxics submodel was developed and incorporated into an existing laterally integrated hydrodynamics and transport model. The toxics submodel describes the physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. The two-dimensional toxicant simulation model was applied to Shasta Reservoir in California to simulate the physico-chemical processes and fate of a volatile toxic compound, methyl isothiocyanate (MITC), during a chemical spill into the Sacramento River in 1991. The predicted MITC concentrations were compared with those observed. The effect of reservoir flow regimes on the transport and fate of the toxic substance was investigated. The results suggested that the persistence of MITC is significantly influenced by different flow regimes. Methyl isothiocyanate is more persistent in the reservoir under an interflow condition due to reduced volatilization from deep layers than under an overflow condition. In the overflow situation, the plume moved more slowly toward the dam and experienced greater dissipation. This analysis can assist in toxic spill control and reservoir management, including field sampling and closure of water intakes.  相似文献   
836.
Some soils develop severe and persistent water repellency following contamination with crude oil. This study was conducted to characterize and compare the spatial distribution of soil water repellency and residual oil contamination at 12 such sites. The molarity of ethanol droplet (MED) test was used to assess soil water repellency and the content of dichloromethane-extractable organics (DEO) was used to quantify residual oil in soil. We found a relatively strong positive correlation between MED and DEO in soil (r2 = 0.74). Both variables tended to decrease abruptly with depth at 11 of the 12 study sites. Dichloromethane-extractable organics similarly decreased with depth in control adjacent soil (MED = 0 M), but from an average concentration one to two orders of magnitude lower than in water-repellent soil. Using data from corresponding control adjacent and water-repellent soils, we determined that approximately 29 and 10% of measured total organic carbon in water-repellent A- and B-horizon soil, respectively, consists of dichloromethane-insoluble organic carbon of petroleum origin. We propose that this fraction contains most of the causative agents of soil water repellency at the studied sites.  相似文献   
837.
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.  相似文献   
838.
Soil ingestion by children is an important pathway in assessing public health risks associated with exposure to arsenic-contaminated soils. Soil chemical methods are available to extract various pools of soil arsenic, but their ability to measure bioavailable arsenic from soil ingestion is unknown. Arsenic extracted by five commonly used soil extractants was compared with bioavailable arsenic measured in vivo by immature swine (Sus scrofa) dosing trials. Fifteen contaminated soils that contained 233 to 17 500 mg kg(-1) arsenic were studied. Soil extractants were selected to dissolve surficially adsorbed and/or readily soluble arsenic (water, 1 M sodium acetate, 0.1 M Na2HPO4/0.1 M NaH2PO4) and arsenic in Fe and Mn oxide minerals (hydroxylamine hydrochloride, ammonium oxalate). The mean percent of total arsenic extracted was: ammonium oxalate (53.6%) > or = hydroxylamine hydrochloride (51.7%) > phosphate (10.5%), acetate (7.16%) > water (0.15%). The strongest relationship between arsenic determined by soil chemical extraction and in vivo bioavailable arsenic was found for hydroxylamine hydrochloride extractant (r = 0.88, significant at the 0.01 probability level). Comparison of the amount of arsenic extracted by soil methods with bioavailable arsenic showed the following trend: ammonium oxalate, hydroxylamine hydrochloride > in vivo > phosphate, acetate > water. The amount of arsenic dissolved in the stomach (potentially bioavailable) is between surficially adsorbed (extracted by phosphate or acetate) and surficially adsorbed + nonsurficial forms in Fe and Mn oxides (extracted by hydroxylamine hydrochloride or ammonium oxalate). Soil extraction methods that dissolve some of the amorphous Fe, such as hydroxylamine hydrochloride, can be designed to provide closer estimates of bioavailable arsenic.  相似文献   
839.
In order to improve the process performance regarding the removal of organics, nitrogen, and an odor-causing compound (sulfide) contained in domestic wastewater, an entrapped-mixed-microbial cell (EMMC) with and without humic substances for both fixed and moving carrier reactors and conventional suspended growth culture (i.e. conventional activated sludge process) were investigated simultaneously. Both synthetic (simulated to the organics concentration of general domestic sewage) and actual domestic wastewater were investigated under operational conditions of 12 h of hydraulic retention time (HRT) with 1 h of aeration and 1 h of non-aeration, and 6 h of HRT with continuous aeration, at a room temperature of 25 +/- 2 degrees C. It was found that entrapping humic substances in the EMMC carriers had no impact on the removal of organics, nitrogen, and the odor-producing compound. Additionally, the performance of the EMMC moving carrier system for the removal of these pollutants is similar to that of the EMMC fixed carrier system. In general, the EMMC associated systems which provide high solids retention time achieve a better removal of chemical oxygen demand (COD), nitrogen, and the odor-producing substance than the suspended growth system for both HRTs of 6 h (continuous aeration) and 12 h (1 h of aeration and 1 h of non-aeration). Both the fixed and moving carrier EMMC processes, therefore, have the potential for improvement or replacement of the existing conventional activated sludge process with regard to improving the effluent qualities (such as COD, nitrogen and odor-producing compound) for reuse/disposal.  相似文献   
840.
One of the main problems in using environmental cost-benefit analysis is deciding on the relevant population: whose benefits should we count? This is important since aggregate benefits depend on both per-person benefit and the number of beneficiaries. Yet this latter term is often hard to evaluate. Distance-decay functions are one way of addressing this problem. In this paper, we present estimates of distance-decay functions for a particular environmental improvement, namely a reduction in low flow problems on the River Mimram in Southern England. We do this both for users and non-users, in the context of a contingent valuation study of the benefits of improving low flow conditions. We test whether distance-decay effects for mean Willingness to Pay are stronger for a single environmental good (the River Mimram, in this case) than for a more inclusive set (here, all rivers in Thames region which suffer from low flow problems). Finally, we explore the impact on part-whole bias, in terms of the relationship between WTP for an individual site and WTP for a more inclusive group of sites, of allowing for distance-decay effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号