首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   18篇
  国内免费   7篇
安全科学   39篇
废物处理   43篇
环保管理   140篇
综合类   230篇
基础理论   235篇
环境理论   3篇
污染及防治   324篇
评价与监测   70篇
社会与环境   53篇
灾害及防治   3篇
  2023年   11篇
  2022年   16篇
  2021年   23篇
  2020年   16篇
  2019年   15篇
  2018年   39篇
  2017年   40篇
  2016年   44篇
  2015年   36篇
  2014年   42篇
  2013年   61篇
  2012年   49篇
  2011年   78篇
  2010年   59篇
  2009年   61篇
  2008年   71篇
  2007年   69篇
  2006年   38篇
  2005年   55篇
  2004年   30篇
  2003年   36篇
  2002年   34篇
  2001年   19篇
  2000年   15篇
  1999年   10篇
  1998年   16篇
  1997年   5篇
  1996年   11篇
  1995年   19篇
  1994年   11篇
  1993年   7篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1986年   8篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1969年   2篇
  1963年   2篇
  1961年   2篇
  1959年   3篇
  1958年   3篇
  1957年   2篇
排序方式: 共有1140条查询结果,搜索用时 640 毫秒
551.
Recently developed theoretical models of stage-structured consumer-resource systems have shown that stage-specific biomass overcompensation can arise in response to increased mortality rates. We parameterized a stage-structured population model to simulate the effects of increased adult mortality caused by a pathogen outbreak in the perch (Perca fluviatilis) population of Windermere (UK) in 1976. The model predicts biomass overcompensation by juveniles in response to increased adult mortality due to a shift in food-dependent growth and reproduction rates. Considering cannibalism between life stages in the model reinforces this compensatory response due to the release from predation on juveniles at high mortality rates. These model predictions are matched by our analysis of a 60-year time series of scientific monitoring of Windermere perch, which shows that the pathogen outbreak induced a strong decrease in adult biomass and a corresponding increase in juvenile biomass. Age-specific adult fecundity and size at age were higher after than before the disease outbreak, suggesting that the pathogen-induced mortality released adult perch from competition, thereby increasing somatic and reproductive growth. Higher juvenile survival after the pathogen outbreak due to a release from cannibalism likely contributed to the observed biomass overcompensation. Our findings have general implications for predicting population- and community-level responses to increased size-selective mortality caused by exploitation or disease outbreaks.  相似文献   
552.
553.
Mycorrhizal fungal identity and diversity relaxes plant-plant competition   总被引:1,自引:0,他引:1  
There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF diversity can act as insurance to sustain plant productivity under changing environmental conditions.  相似文献   
554.
555.
Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.  相似文献   
556.
557.
558.
559.
560.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号