首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1260篇
  免费   24篇
  国内免费   8篇
安全科学   45篇
废物处理   48篇
环保管理   180篇
综合类   239篇
基础理论   271篇
环境理论   3篇
污染及防治   364篇
评价与监测   79篇
社会与环境   60篇
灾害及防治   3篇
  2023年   15篇
  2022年   20篇
  2021年   26篇
  2020年   19篇
  2019年   16篇
  2018年   40篇
  2017年   45篇
  2016年   50篇
  2015年   42篇
  2014年   46篇
  2013年   69篇
  2012年   56篇
  2011年   84篇
  2010年   60篇
  2009年   65篇
  2008年   77篇
  2007年   76篇
  2006年   44篇
  2005年   59篇
  2004年   38篇
  2003年   41篇
  2002年   40篇
  2001年   23篇
  2000年   19篇
  1999年   13篇
  1998年   20篇
  1997年   7篇
  1996年   16篇
  1995年   20篇
  1994年   15篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   11篇
  1988年   7篇
  1987年   7篇
  1986年   10篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1974年   3篇
  1959年   3篇
  1958年   3篇
排序方式: 共有1292条查询结果,搜索用时 234 毫秒
61.
Background, aim and scope  The use of sodium hypochlorite (HYP) in viticulture results in effluents which are contaminated with halogenated substances. These disinfection by-products (DBPs) can be quantified as group parameter ‘adsorbable organic halogens’ (AOX) and have not been determined in effluents of viticulture yet. The substances that are detected as AOX are unknown. The AOX can be composed of harmless substances, but even toxic contaminants. Thus, it is impossible to assess ecological impacts. The aim of this study is to determine the quantification of AOX and DBPs after the use of HYP. This will be helpful to reduce environmental pollution by AOX. Materials and methods  The potential of HYP to generate AOX was determined in laboratory-scale experiments. Different model solutions were treated with HYP according to disinfection processes in viticulture and conditions of AOX formation in effluents were simulated. AOX were quantified using the flask-shaking method and identified DBPs were investigated by gas chromatography–mass spectrometry. Results  Treatment with HYP resulted in the formation of AOX. The percentage conversion of HYP to AOX was up to 11%. Most important identified DBPs in viticulture are chloroform, dichloroacetic acid and trichloroacetaldehyde. In addition, the formation of carbon tetrachloride (CT), 1,1,1-trichloropropanone, 2,4-dichlorobenzoic acid and 2-chloro-/2,4-dichlorophenylacetic acid was investigated. It was demonstrated that reaction temperature, concentration of HYP and type of organic matter have important influence on the formation of chlorinated DBPs. Discussion  The percentage conversion of HYP to AOX was similar to other published studies. Although a correlation of single compounds and AOX is difficult, chloroform was the predominant AOX. Generation of the volatile chloroform should be avoided due to possible adverse effects. The generation of dichloroacetic acid is of minor importance on account of biodegradation. Trichloroacetaldehyde and 1,1,1-trichloropropanone are weak mutagens and their formation should be avoided. Conclusions  The generation of AOX and chlorinated DBPs can be minimised by reducing the concentrations of the organic materials in the effluents. The removal of organic matter before disinfection results in a decreased formation of AOX. HYP is an effective disinfectant; therefore, it should be used at low temperatures and concentrations to reduce the amount of AOX. If possible, disinfection should be accomplished by the use of no chlorine-containing agents. By this means, negative influences of HYP on the quality of wine can also be avoided. Recommendations and perspectives  Our results indicate that HYP has a high potential to form AOX in effluents of viticulture. The predominant by-products are chloroform, dichloroacetic acid and trichloroacetaldehyde. In further research, wastewaters from a winery and the in- and outflows of two sewage treatment plants were sampled during vintage and analysed. These results will be discussed in a following paper.  相似文献   
62.
The dynamic soil chemistry model SMART was applied to 121 intensive forest monitoring plots (mainly located in western and northern Europe) for which both element input (deposition) and element concentrations in the soil solution were available. After calibration of poorly known parameters, the model accurately simulated soil solution concentrations for most plots as indicated by goodness-of-fit measures, although some of the intra-annual variation especially in nitrate and aluminium concentrations could not be reproduced. Model evaluations of two emission-deposition scenarios (current legislation and maximum feasible reductions) for the period 1970-2030 show a strong reduction in sulphate concentrations between 1980 and 2000 in the soil due to the high reductions in sulphur emissions. However, current legislation hardly reduces future nitrogen concentrations, whereas maximum feasible reductions reduces them by more than half. Maximum feasible reductions are also more effective in increasing pH and reducing aluminium concentrations, mostly below ‘critical’ values.  相似文献   
63.
Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.  相似文献   
64.
Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO2, CO, NO, NOx, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.  相似文献   
65.
Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are used in large quantities. They are persistent and found in measurable levels in human serum around the world. They have been associated with developmental, hepatic, and carcinogenic effects in animal studies. The aim of the present study was to describe levels of PFCs in serum among Inuits from Greenland and inhabitants from Warsaw, Poland and Kharkiv, Ukraine. Furthermore, the aim was to define social- and lifestyle related determinants of exposure for these compounds. Serum levels of seven PFCs were analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS). The concentrations of PFOS and PFOA were the highest of all PFCs in all three populations with a total amount of almost 90% of the PFCs. The mean levels of PFOS and PFOA were in the Greenlandic Inuits 52 and 4.8 ng mL(-1), in Poland 19 and 5.2 ng mL(-1), and in Ukraine 8.1 and 1.9 ng mL(-1), respectively. Thus, levels of PFCs in the serum of Inuits on Greenland were among the highest described in a general population whereas the levels in Poland were similar to other industrialized countries. The exposure in Ukraine was rather low. In the Greenlandic Inuit population, intake of seafood, tea, age and area of living were significant determinants of PFOS concentrations and explained about 22% of the variation. For the other populations no strong determinants were found.  相似文献   
66.
Bioaccumulation models take various elimination and uptake processes into account, estimating rates from chemical lipophilicity, expressed as the octanol-water partition ratio (Kow). Here, we focussed on metabolism, which transforms parent compounds into usually more polar metabolites, thus enhancing elimination. The aim of this study was to quantify the change in lipophilicity of relevant organic pollutants undergoing various biotransformation reactions in mammals. We considered oxidation reactions catalyzed by three enzyme groups: cytochrome P450 (CYP), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH). Estimated log Kow values of a selected dataset of parent compounds were compared with the log Kow of their first metabolites. The log Kow decreased by a factor that varies between 0 and −2, depending on the metabolic pathway. For reactions mediated by CYP, the decrease in Kow was one order of magnitude for hydroxylated and epoxidated compounds and two orders of magnitude for dihydroxylated and sulphoxidated xenobiotics. On the other hand, no significant change in lipophilicity was observed for compounds N-hydroxylated by CYP and for alcohols and aldehydes metabolized by ADH and ALDH. These trends could be anticipated by the calculus method of log Kow. Yet, they were validated using experimental log Kow values, when available. These relationships estimate the extent to which the elimination of pollutants is increased by biotransformation. Thus, the quantification of the Kow reduction can be considered as a first necessary step in an alternative approach to anticipate biotransformation rates, which are hard to estimate with existing methods.  相似文献   
67.
The quantitative evaluation of chemical fraction of Co and Ni in the industrial fly ash by methods of five step sequential extraction was carried out in order to characterize metal mobility in environmental conditions. The research involved (i) water-soluble (pH=7), (ii) acid-soluble (pH=5), (iii) oxide, (iv) sulfide and (v) residue metal fractions. It was discovered, that the total extraction of the studied metals from fly ash to solutions take place in the following quantities Co - 35.5 and Ni - 153.0mgkg(-1). The investigations of chemical fractions proved that the subject metals occur mainly in fly ash as: oxide (Co - 7.0, Ni - 28.5mgkg(-1)) and residue (Co - 11.5, Ni - 42.5mgkg(-1)) as well as sulfide (Co - 8.5, Ni - 46.5mgkg(-1)). Low concentrations of metals for water-soluble fraction (Co - 0.7, Ni - 1.2mgkg(-1)) and acid-soluble fraction (Co - 4.5, Ni - 23.5mgkg(-1)) were observed. The fractions of Co and Ni leachable from the ash in environmental conditions contain: 24.0% (Co) and 23.3% (Ni) of metal total amount in the industrial fly ash. The obtained mobility parameter of Co and Ni can be applied to estimate the concentration increase of mobile and hardly mobile forms of these metals in soil polluted with the ash.  相似文献   
68.
In municipal and industrial practices, wastewater treatment sludges are generally conditioned with organic polymers before dewatering. The dewatering polymers are expensive and contribute significantly to the overall sludge management cost. This paper discusses a preconditioning strategy that holds great promise for enhancing dewatering properties of wastewater treatment sludges, while reducing the cost. In this approach, the waste activated sludge (WAS) is briefly preconditioned with an acid before flocculating with an organic polymer. Experimental results showed that acid preconditioning significantly enhanced dewatering. Separately acidifying WAS and subsequently combining it with primary sludge produced higher presscake solids than acidifying the combined sludge to the same final pH. Acidification exhibited the added benefit of reducing Escherichia coli counts in sludge, thus improving its biological character. This may provide flexibility in choosing a beneficial use application.  相似文献   
69.
The carcinogenic and toxic ptaquiloside (PTA) is a major secondary metabolite in Bracken fern (Pteridium aquilinum (L.) Kuhn) and was hypothesized to influence microbial communities in soil below Bracken stands. Soil and Bracken tissue were sampled at field sites in Denmark (DK) and New Zealand (NZ). PTA contents of 2.1 +/- 0.5 mg g(-1) and 37.0 +/- 8.7 mg g(-1) tissue were measured in Bracken fronds from DK and NZ, respectively. In the two soils the PTA levels were similar (0-5 microg g(-1) soil); a decrease with depth could be discerned in the deeper B and C horizons of the DK soil (weak acid sandy Spodosol), but not in the NZ soil (weak acid loamy Entisol). In the DK soil PTA turnover was predominantly due to microbial degradation (biodegradation); chemical hydrolysis was occurring mainly in the uppermost A horizon where pH was very low (3.4). Microbial activity (basal respiration) and growth ([3H]leucine incorporation assay) increased after PTA exposure, indicating that the Bracken toxin served as a C substrate for the organotrophic microorganisms. On the other hand, there was no apparent impact of PTA on community size as measured by substrate-induced respiration or composition as indicated by community-level physiological profiles. Our results demonstrate that PTA stimulates microbial activity and that microorganisms play a predominant role for rapid PTA degradation in Bracken-impacted soils.  相似文献   
70.
Sulfur pollution can lead to serious problems in freshwater wetlands, including phosphorus eutrophication and sulfide toxicity. We tested the effects of anaerobic iron-rich groundwater discharge in fens, simulated by iron injection, on two characteristic species (Juncus effusus and Caltha palustris) in a sulfidic environment. Biomass production of C. palustris roots showed an optimum response to the combined addition of iron and sulfide, with highest values at intermediate concentrations of both substances. Iron deficiency apparently occurred at low iron concentrations, while at high iron concentrations, growth was decreased. For J. effusus, in contrast, no toxic effects were found of both iron and sulfide. This could be explained by larger radial oxygen loss (ROL) of J. effusus and could not be explained by differences in phosphorous concentrations. The results of our experiments confirm that iron-rich groundwater discharge has the potential to affect vegetation composition through toxicity modification in sulfidic environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号