首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91132篇
  免费   1220篇
  国内免费   1088篇
安全科学   3752篇
废物处理   3324篇
环保管理   14074篇
综合类   21127篇
基础理论   26424篇
环境理论   73篇
污染及防治   15084篇
评价与监测   5451篇
社会与环境   3579篇
灾害及防治   552篇
  2022年   801篇
  2021年   796篇
  2020年   651篇
  2019年   859篇
  2018年   1120篇
  2017年   1163篇
  2016年   2157篇
  2015年   1832篇
  2014年   2566篇
  2013年   9243篇
  2012年   2210篇
  2011年   2479篇
  2010年   3268篇
  2009年   3399篇
  2008年   2033篇
  2007年   1870篇
  2006年   2309篇
  2005年   2290篇
  2004年   2585篇
  2003年   2433篇
  2002年   2002篇
  2001年   2301篇
  2000年   2022篇
  1999年   1499篇
  1998年   1369篇
  1997年   1361篇
  1996年   1490篇
  1995年   1587篇
  1994年   1476篇
  1993年   1342篇
  1992年   1322篇
  1991年   1295篇
  1990年   1250篇
  1989年   1227篇
  1988年   1059篇
  1987年   990篇
  1986年   991篇
  1985年   1071篇
  1984年   1165篇
  1983年   1172篇
  1982年   1176篇
  1981年   1108篇
  1980年   944篇
  1979年   933篇
  1978年   828篇
  1977年   717篇
  1976年   651篇
  1975年   626篇
  1973年   659篇
  1972年   655篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
711.
This paper describes the results of the first experimental stage of Phase IV of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The objective of this stage of the JIP was to generate experimental rainout data for non-flashing water and xylene experiments. See the overview companion paper I for a wider overview of the problem, model implementation and associated model validation.A range of orifice sizes (2.5 and 5 mm) and stagnation pressures (4–16 barg) were applied. Measurements included flow rate, initial droplet size, plume concentrations/temperatures for a range of downstream locations, and distributed rainout.Instead of the Phase Doppler Anemometry method used for droplet size measurements earlier in the JIP, a photographic technique was applied in an attempt to include measurement of the larger (non-spherical) droplets. This enabled a more accurate evaluation of the initial droplet size distribution and a much clearer understanding of the droplet morphology. The results showed that the droplet behaviour in the jet is more complex than had been anticipated with the mass distribution dominated by a very small number of large non-spherical droplets. Consequently a large number of spray images were required to evaluate an accurate size distribution.Distributed rainout was measured by weighing the amount of rainout in trays positioned along the jet direction. The rainout results showed a good degree of repeatability and internal consistency. They indicated that an increasing proportion of the released material did not rainout for increasing pressure. Rainout distance also increased with increasing pressure. Evaporation of the liquid was confirmed by temperature measurements, which showed the effect of evaporative cooling.Xylene concentration measurements (up to 1%) were carried out using a direct reading photoionization detector calibrated for xylene (measuring vapour only). For a limited dataset, the accuracy of these measurements was estimated by means of comparison against an alternative more time-consuming concentration method (xylene absorption onto a charcoal filter; measuring both vapour and liquid). The concentration measurements displayed several consistent qualitative features. For example, at a given downstream distance, the peak concentration increases with increasing pressure and nozzle diameter and the vertical height at which the peak is achieved increases. The cross-stream profiles displayed a consistent tendency to increased concentration at the edge of the jet, and the reason for this has not been established.Finally recommendations are provided for potential future work.  相似文献   
712.
On 29 October 2009, at 19:30 IST, a devastating vapour cloud explosion occurred in a large fuel storage area at the Indian Oil Corporation (IOC) Depot in Jaipur, India, generating significant blast pressure. As a consequence of this explosion, the entire installation was destroyed, buildings in the immediate vicinity were heavily damaged, and windowpane breakages were found up to 2 km from the terminal. The IOC estimated that the total loss from the fire and explosion was approximately INR 2800 million.Ironically, as a storage site, the Jaipur terminal was not highly congested, and thus was not considered to have adequate potential for a vapour cloud explosion (VCE). Nevertheless, the prima facie evidences indicate that this was a case of VCE. Therefore, the main objective of this study is to quantify the potential overpressures due to vapour cloud explosions (VCEs) using the Process Hazard Analysis DNV Norway based PHAST 6.51 Software. The results are validated by the extent of the damage that had occurred. The estimation of the VCE shows that a maximum 1.0 bar overpressure was generated in the surrounding area. The initial assessment of the accident data roughly estimates the release mode, time, and amount of vaporized fuel. A more accurate estimate has been obtained by modelling the dispersion of vapour clouds in the surrounding atmosphere, which reveals trends and relationships for the occurrence of vapour cloud explosions.  相似文献   
713.
This paper discusses the results of an experimental program carried out to determine dust cloud deflagration parameters of selected solid-state hydrogen storage materials, including complex metal hydrides (sodium alanate and lithium borohydride/magnesium hydride mixture), chemical hydrides (alane and ammonia borane) and activated carbon (Maxsorb, AX-21). The measured parameters include maximum deflagration pressure rise, maximum rate of pressure rise, minimum ignition temperature, minimum ignition energy and minimum explosible concentration. The calculated explosion indexes include volume-normalized maximum rate of pressure rise (KSt), explosion severity (ES) and ignition sensitivity (IS). The deflagration parameters of Pittsburgh seam coal dust and Lycopodium spores (reference materials) are also measured. The results show that activated carbon is the safest hydrogen storage media among the examined materials. Ammonia borane is unsafe to use because of the high explosibility of its dust. The core insights of this contribution are useful for quantifying the risks associated with use of these materials for on-board systems in light-duty fuel cell-powered vehicles and for supporting the development of hydrogen safety codes and standards. These insights are also critical for designing adequate safety features such as explosion relief venting and isolation devices and for supplementing missing data in materials safety data sheets.  相似文献   
714.
An approach to reduce the probability of producing a domino effect in process industry is developed in this work. It is assumed that optimal layouts should include appropriate analysis to reduce risk during the process design stage. The model developed for this approach combines the estimation of probability of damage due to overpressure, proposed by Mingguang and Juncheng (2008), and escalation threshold values defined by Cozzani, Gubinelli, and Salzano (2006). These equations are combined with other typical layout constraints as well as bounding the probability constraint, which has resulted in a highly non-linear MINLP problem. Solving a case study used by other authors provides evidence for reliability of the developed approach. In this way, layouts are designed to reduce the escalation probability yielding safe distributions.  相似文献   
715.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   
716.
Major Accident Hazard (MAH) and Occupational Safety and Health (OSH) are two separated topics in both industrial practice and legislation; recently, interest is increasing toward an integrated risk assessment mainly forced by the tendency to a more efficient safety management system. The present study proposes a semi-quantitative approach to integrate MAH in OSH risk assessment. The two risk types are characterized by opposite features: the OSH analysis is usually task-based and focused on job profiles, while the MAH analysis is space-based and focused on plant characteristics. The basic idea of the proposed approach is to merge spatial information and job profile features in order to improve OSH assessment; thus, a risk index derived by the recent standard ISO 12100 (2010) has been adapted. In detail, the proposed index combines exposure times of each worker at each plant unit – derived from the OSH analysis – with damage areas derived from MAH analysis allowing a quantitative assessment of the MAH risk level for each individual job profile. The model has been tested in a large petrochemical plant; several hypotheses have been developed in order to validate the model. Results have showed the potentiality of the proposed approach in providing a common and coherent representation of both MAH and OSH risks, according to job profiles and plant units.  相似文献   
717.
In the Netherlands there are around 400 “Seveso” sites that fall under the Dutch Major Hazards Decree (BRZO) 1999. Between 2006 and 2010 the Dutch Labour Inspectorate's Directorate for Major Hazard Control completed investigations of 118 loss of containment incidents involving hazardous substances from this group. On the basis of investigation reports the incidents were entered in a tailor-made tool called Storybuilder developed for the Dutch Ministry of Social Affairs and Employment for identifying the dominant patterns of technical safety barrier failures, barrier task failures and underlying management causes associated with the resulting loss of control events. The model is a bow-tie structure with six lines of defence, three on either side of the central loss of containment event. In the first line of defence, failures in the safety barriers leading to loss of control events were primarily equipment condition failures, pre start-up and safeguarding failures and process deviations such as pressure and flow failures. These deviations, which should have been recovered while still within the safe envelope of operation, were missed primarily because of inadequate indication signals that the deviations have occurred. Through failures of subsequent lines of defence they are developing into serious incidents. Overall, task failures are principally failures to provide adequate technical safety barriers and failures to operate provided barriers appropriately. Underlying management delivery failures were mainly found in equipment specifications and provisions, procedures and competence. The competence delivery system is especially important for identifying equipment condition, equipment isolation for maintenance, pre-start-up status and process deviations. Human errors associated with operating barriers were identified in fifty per cent of cases, were mostly mistakes and feature primarily in failure to prevent deviations and subsequently recover them. Loss of control associated with loss of containment was primarily due to the containment being bypassed (72% of incidents) and less to material strength failures (28%). Transfer pipework, connections in process plant and relief valves are the most frequent release points and the dominant release material is extremely flammable. It is concluded that the analysis of a large number of incidents in Storybuilder can support the quantification of underlying causes and provide evidence of where the weak points exist in major hazard control in the prevention of major accidents.  相似文献   
718.
A series of small-scale experiments involving physical explosions in a 1.6 l pressure vessel was carried out. Explosions were initiated by spontaneous rupture of an aluminium membrane on one side of the vessel at a pressure in the range 1–1.2 MPa. The pressure waves released were measured at different distances along two separate shock tubes, one 10 m long and 200 mm in diameter (closed at one end by the high pressure vessel) and the other 15 m long and 100 mm in diameter.TNT equivalency was used for predicting the blast wave characteristics after vessel rupture. TNT equivalency was used because equations for prediction of peak pressure and impulse of the blast wave in 1-D geometry after detonations of condensed explosives are known. Some experiments with an equivalent amount of real explosive were carried out for comparison with the theoretical and experimental data obtained. The applicability of the TNT equivalency method presented for calculations of maximum pressure and shock wave impulse generated after rupture of the pressure vessel in 1-D geometry is discussed.  相似文献   
719.
To quickly and accurately quantify the material release in process units, gas detectors may be placed according to the results of gas dispersion modeling. DNV's PHAST software is one of the most useful and reliable tools for material dispersion modeling. In this software, fluid dispersion is modeled based on the process conditions, the weather conditions and the specifications of the material release point. However, varying weather conditions throughout the year and the exact determination of the release point on the plot plan and the release elevation are problematic; these issues cause the results to be non-exact and non-integrated. Choosing the most appropriate conditions is challenging. In this paper, a scheme was provided to select the most appropriate conditions for gas dispersion modeling. This scheme approaches modeling based on the worst-case scenario (the situation in which the dispersed gas reaches the detector later in comparison to the other cases). Therefore, different weather conditions, release elevations and release points on the plot plan were modeled for an absorber tower of the Gonbadli Dehydration Unit of the Khangiran Refinery. The worst case of each release condition was then chosen. Finally, gas detectors were placed using the gas dispersion modeling results based on the worst-case scenario.  相似文献   
720.
In this study, an Integrated Simulation-Data Envelopment Analysis (DEA) approach is presented for optimum facility layout of maintenance workshop in a gas transmission unit. The process of repair of incoming parts includes various operations on different facilities. The layout problem in this system involves determining the optimum location of all maintenance shop facilities. Layout optimization plays a crucial role in this type of problems in terms of increasing the efficiency of main production line. Standard types of layouts including U, S, W, Z and straight lines are considered. First, the maintenance workshop is modeled with discrete-event-simulation. Time in system, average waiting time, average machine utilization, average availability of facilities, average queue length of facilities (AL) and average operator utilization are obtained from simulation as key performance indicators (KPIs) of DEA. Also, safety index and number of operators are considered as other KPIs. Finally, a unified non-radial Data Envelopment Analysis (DEA) is presented with respect to the stated KPIs to rank all layouts alternatives and to identify the best configuration. Principle Component Analysis (PCA) is used to validate and verify the results. Previous studies do not consider safety factor in layout design problems. This is the first study that presents an integrated approach for identification of optimum layout in a maintenance workshop of gas transmission unit by incorporating safety and conventional factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号