首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6921篇
  免费   54篇
  国内免费   35篇
安全科学   149篇
废物处理   361篇
环保管理   529篇
综合类   1090篇
基础理论   1661篇
环境理论   8篇
污染及防治   2230篇
评价与监测   555篇
社会与环境   405篇
灾害及防治   22篇
  2023年   71篇
  2022年   172篇
  2021年   181篇
  2020年   90篇
  2019年   107篇
  2018年   226篇
  2017年   242篇
  2016年   335篇
  2015年   222篇
  2014年   361篇
  2013年   568篇
  2012年   382篇
  2011年   473篇
  2010年   323篇
  2009年   280篇
  2008年   413篇
  2007年   382篇
  2006年   316篇
  2005年   250篇
  2004年   215篇
  2003年   196篇
  2002年   164篇
  2001年   119篇
  2000年   71篇
  1999年   61篇
  1998年   36篇
  1997年   31篇
  1996年   25篇
  1995年   46篇
  1994年   44篇
  1993年   17篇
  1992年   32篇
  1991年   27篇
  1990年   25篇
  1989年   24篇
  1988年   18篇
  1987年   15篇
  1986年   28篇
  1985年   15篇
  1984年   17篇
  1983年   21篇
  1982年   22篇
  1980年   15篇
  1975年   13篇
  1966年   20篇
  1965年   13篇
  1964年   12篇
  1958年   14篇
  1957年   14篇
  1956年   15篇
排序方式: 共有7010条查询结果,搜索用时 420 毫秒
391.
This study was undertaken to evaluate the effectiveness of several household practices (washing with water or acidic, alkaline, and oxidizing solutions, and peeling) in minimizing pesticide residue contamination of tomatoes, as well as the impact on the quality of the treated fruit. Tests were performed using two systemic fungicides (azoxystrobin and difenoconazole) and one contact fungicide (chlorothalonil). Solid-liquid extraction with low temperature partition (SLE/LTP) and liquid-liquid extraction with low temperature partition (LLE/LTP) were used to prepare the samples for pesticides determination by gas chromatography. Washing the tomatoes with water removed approximately 44% of chlorothalonil, 26% of difenoconazole, and 17% of azoxystrobin. Sodium bicarbonate (5%) and acetic acid (5%) solutions were more efficient, removing between 32 and 83% of the residues, while peeling removed from 68 to 88% of the pesticides. The washing solutions altered some fruit quality parameters, including acidity and chroma, and also caused weight loss. Acetic acid (0.15 and 5%) and hypochlorite (1%) solutions had the greatest effect on these parameters.  相似文献   
392.
Although fish is a healthy alternative for meat, it can be a vehicle for mercury (Hg), including in its most toxic organic form, methylmercury (MeHg). The objective of the present study was to estimate the risk to human health caused by the consumption of sushi and sashimi as commercialized by Japanese food restaurants in the city of Campinas (SP, Brazil). The total Hg content was determined by atomic absorption spectrometry with thermal decomposition and amalgamation, and the MeHg content calculated considering that 90% of the total Hg is in the organic form. The health risk was estimated from the values for the provisional tolerable weekly ingestion (PTWI) by both adults and children. The mean concentrations for total Hg were: 147.99, 6.13, and 3.42 µg kg?1 in the tuna, kani, and salmon sushi samples, respectively, and 589.09, 85.09, and 11.38 µg kg?1 in the tuna, octopus and salmon sashimi samples, respectively. The tuna samples showed the highest Hg concentrations. One portion of tuna sashimi exceeded the PTWI value for MeHg established for children and adults. The estimate of risk for human health indicated that the level of toxicity depended on the type of fish and size of the portion consumed.  相似文献   
393.
Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD5) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km2 watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km2 watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors—and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.  相似文献   
394.
Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.  相似文献   
395.
Membrane fouling is a major concern for the optimization of membrane bioreactor (MBR) technologies. Numerous studies have been led in the field of membrane fouling control in order to assess with precision the fouling mechanisms which affect membrane resistance to filtration, such as the wastewater characteristics, the mixed liquor constituents, or the operational conditions, for example. Worldwide applications of MBRs in wastewater treatment plants treating all kinds of influents require new methods to predict membrane fouling and thus optimize operating MBRs. That is why new models capable of simulating membrane fouling phenomenon were progressively developed, using mainly a mathematical or numerical approach. Faced with the limits of such models, artificial neural networks (ANNs) were progressively considered to predict membrane fouling in MBRs and showed great potential. This review summarizes fouling control methods used in MBRs and models built in order to predict membrane fouling. A critical study of the application of ANNs in the prediction of membrane fouling in MBRs was carried out with the aim of presenting the bottlenecks associated with this method and the possibilities for further investigation on the subject.  相似文献   
396.
Raptors are good sentinels of environmental contamination and there is good capability for raptor biomonitoring in Europe. Raptor biomonitoring can benefit from natural history museums (NHMs), environmental specimen banks (ESBs) and other collections (e.g. specialist raptor specimen collections). Europe’s NHMs, ESBs and other collections hold large numbers of raptor specimens and samples, covering long periods of time. These collections are potentially a valuable resource for contaminant studies over time and space. There are strong needs to monitor contaminants in the environment to support EU and national chemical management. However, data on raptor specimens in NHMs, ESBs and other collections are dispersed, few are digitised, and they are thus not easy to access. Specimen coverage is patchy in terms of species, space and time. Contaminant research with raptors would be facilitated by creating a framework to link relevant collections, digitising all collections, developing a searchable meta-database covering all existing collections, making them more visible and accessible for contaminant research. This would also help identify gaps in coverage and stimulate specimen collection to fill gaps in support of prioritised contaminant monitoring. Collections can further support raptor biomonitoring by making samples available for analysis on request.  相似文献   
397.
Triclocarban (TCC) is an antibacterial agent found in pharmaceuticals and personal care products (PPCP). It is potentially bioaccumulative and an endocrine disruptor, being classified as a contaminant of emerging concern (CEC). In normal uses, approximately 96% of the used TCC can be washed down the drain going into the sewer system and eventually enter in the aquatic environment. UV photolysis can be used to photodegrade TCC and ecotoxicity assays could indicate the photodegradation efficiency, since the enormous structural diversity of photoproducts and their low concentrations do not always allow to identify and quantify them. In this work, the TCC was efficiently degraded by UVC direct photolysis and the ecotoxicity of the UV-treated mixtures was investigated. Bioassays indicates that Daphnia similis (48 h EC50 = 0.044 μM) was more sensitive to TCC than Pseudokirchneriella subcapitata (72 h IC50 = 1.01 μM). TCC and its photoproducts caused significant effects on Eisenia andrei biochemical responses (catalase and glutathione-S-transferase); 48 h was a critical exposure time, since GST reached the highest activity values. UVC reduced the TCC toxic effect after 120 min. Furthermore, TCC was photodegraded in domestic wastewater which was simultaneously disinfected for total coliform bacterial (TCB) (360 min) and Escherichia coli (60 min).
Graphical abstract TCC degradation and ecotoxicological assessment
  相似文献   
398.
In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.  相似文献   
399.
Heavy metal contamination is a long-standing and very well-known public health problem, and its exposure can cause damage to several organs of human body, especially on the central nervous system of young children and teenagers. The aim of this article is to evaluate lead, cadmium, and manganese contamination in 125 children from 6 to 13 years old living in contaminated areas during the period from 2006 to 2009 (São Vicente, Cubatão Downtown, Bertioga and Cubatão Pilões/Água Fria). This estuary area is the most important example of environmental degradation by chemicals from industrial sources. This is a cross-sectional study through clinical examinations and dental enamel tests. All mothers from these children lived in the area since before the pregnancy. Lead, cadmium, and manganese levels (μg/g) were measured on dental enamel samples through graphite furnace atomic absorption spectrometry, searching for the occurrence of heavy metals. The mean lead concentrations were 139.48 μg/g in Cubatão Pilões/Água Fria, 170.45 μg/g in Cubatão Downtown, 213.52 μg/g in São Vicente, and 151.89 μg/g in Bertioga. The mean cadmium concentrations were 10.83 μg/g in Cubatão Pilões/Água Fria, 12.58 μg/g in Cubatão Downtown, 10.92 μg/g in São Vicente, and 14.57 μg/g in Bertioga. The mean manganese concentrations were 23.49 μg/g in Cubatão Pilões/Água Fria, 30.90 μg/g in Cubatão Downtown, 41.46 μg/g in São Vicente, and 42.00 μg/g in Bertioga. Dental surface enamel may be used as an efficient biomarker of past environmental exposure to lead, manganese, and cadmium which are associated to well-known sources of heavy metal contamination. The results suggest that the evaluated children were exposed to sources of lead, cadmium, and manganese since before their conceptions. Although Bertioga initially was chosen as a control area of this study, it was also was verified to have heavy metal contamination on examined children.  相似文献   
400.
In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM2.5–0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号