首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   33篇
  国内免费   10篇
安全科学   43篇
废物处理   23篇
环保管理   160篇
综合类   85篇
基础理论   221篇
环境理论   1篇
污染及防治   120篇
评价与监测   43篇
社会与环境   27篇
灾害及防治   14篇
  2024年   1篇
  2023年   12篇
  2022年   6篇
  2021年   10篇
  2020年   18篇
  2019年   17篇
  2018年   27篇
  2017年   27篇
  2016年   33篇
  2015年   23篇
  2014年   35篇
  2013年   58篇
  2012年   41篇
  2011年   60篇
  2010年   34篇
  2009年   35篇
  2008年   48篇
  2007年   44篇
  2006年   33篇
  2005年   29篇
  2004年   15篇
  2003年   15篇
  2002年   31篇
  2001年   11篇
  2000年   10篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有737条查询结果,搜索用时 15 毫秒
711.
712.
713.
Plant growth rates and seed size: a re-evaluation   总被引:1,自引:0,他引:1  
Small-seeded plant species are often reported to have high relative growth rate or RGR. However, because RGR declines as plants grow larger, small-seeded species could achieve higher RGR simply by virtue of their small size. In contrast, size-standardized growth rate or SGR factors out these size effects. Differences in SGR can thus only be due to differences in morphology, allocation, or physiology. We used nonlinear regression to calculate SGR for comparison with RGR for 10 groups of species spanning a wide range of life forms. We found that RGR was negatively correlated with seed mass in nearly all groups, but the relationship between SGR and seed mass was highly variable. We conclude that small-seeded species only sometimes possess additional adaptations for rapid growth over and above their general size advantage.  相似文献   
714.
Within the tropics, mangroves and coral reefs represent highly productive biomes. Although these habitats are often within close proximity, the role and importance of mangrove habitats for reef fish species remains unclear. Throughout the Indo-Pacific, reef fish species appear to have few links with estuarine mangrove habitats. In contrast, clear-water non-estuarine mangrove habitats throughout the Caribbean support many reef fish species and may be fundamental for sustaining reef fish populations. But how important are clear-water non-estuarine mangroves for reef fishes within the Indo-Pacific? Using visual surveys during diurnal high tide, the fish assemblages inhabiting clear-water mangrove and adjacent reef habitats of Orpheus Island, Great Barrier Reef, were recorded. Of the 188 species of fishes that were recorded, only 38 were observed to inhabit both habitats. Of these, only eight were observed more than five times within each habitat. These observations provide little indication that the clear-water mangroves are an important habitat for reef fish species. In addition, although based on just a 3-month survey period, we found little evidence to suggest that these areas are important nurseries for reef fish species. The clear-water mangroves of Orpheus Island may, however, provide an additional foraging area for the few reef fish species that were observed to utilize these habitats during high tide. The difference in the importance of clear-water mangroves for reef fishes within this study compared with clear-water mangrove counterparts within the Caribbean is surprising. Although only preliminary, our observations would support suggestions that the patterns reflect the different hydrological characteristics and evolutionary histories of these two biogeographic regions.  相似文献   
715.
Talbot JM  Treseder KK 《Ecology》2012,93(2):345-354
Litter decay rates often correlate with the initial ratios of lignin:nitrogen (N) or lignin:cellulose in litter. However, the chemical and microbial mechanisms that give rise to these patterns are still unclear. To identify these mechanisms, we studied the decomposition of a model plant system, Arabidopsis thaliana, in which plants were manipulated to have low levels of lignin, cellulose, or litter N. Nitrogen fertilizer often increases the loss of cellulose, but it suppresses the breakdown of lignin in plant litter. To understand the mechanisms driving these patterns, we decomposed plants in litterbags for one year in control and N-fertilized plots in an Alaskan boreal forest. We found that litter N had a positive effect on total mass loss because it increased the loss of lignin, N, and soluble C. Lignin had a negative effect on rates of total litter mass loss due to decreases in the loss of cellulose and hemicellulose. Cellulose had a positive effect on lignin loss, supporting the concept of a "priming effect" for lignin breakdown. However, the low-cellulose plants also lost more of their original cellulose compared to the other plant types, indicating that decomposers mined the litter for cellulose despite the presence of lignin. Low-lignin litter had higher fungal biomass and N-acetyl glucosaminidase (NAG, a chitinase) activity, suggesting that lignin restricted fungal growth and may have influenced competitive interactions between decomposers. Nitrogen fertilization increased NAG activity in the early stages of decay. In the later stages, N fertilization led to increased cellulase activity on the litters and tended to reduce lignin losses. The transition over time from competition among decomposers to high cellulase activity and suppressed lignin loss under N fertilization suggests that, in N-limited systems, N fertilization may alter decomposer community structure by favoring a shift toward cellulose- and mineral-N users.  相似文献   
716.
Plant uptake of inorganic and organic nitrogen: neighbor identity matters   总被引:5,自引:0,他引:5  
Miller AE  Bowman WD  Suding KN 《Ecology》2007,88(7):1832-1840
The importance of interspecific competition as a cause of resource partitioning among species has been widely assumed but rarely tested. Using neighbor removals in combination with 15N tracer additions in the field, we examined variation among three alpine species in the uptake of 15N-NH4+, 15N-NO3-, and 15N-13C-[2]-glycine in intact neighborhoods, when paired with a specific neighbor, and when all neighbors were removed. Species varied in the capacity to take up 15N-labeled NH4+, NO3-, and glycine in intact neighborhoods and in interspecific pairs. When interspecific neighbor pairs were compared with no neighbor controls, neighbors reduced 15N uptake in target species by as much as 50%, indicating competition for N. Furthermore, neighbor identity influenced the capacity of species to take up different forms of N. Thus, competition within interspecific neighbor pairs often caused reduced uptake of a particular form of N, as well as shifts to uptake of an alternative form of N. Such shifts in resource use as a result of competition are an implicit assumption in studies of resource partitioning but have rarely been documented. Our study suggests that plasticity in the uptake of different forms of N may be a mechanism by which cooccurring plants reduce competition for N.  相似文献   
717.
Organisms can control movements of nutrients and matter by physically modifying habitat. We examined how an ecosystem engineer, sockeye salmon (Oncorhynchus nerka), influences seasonal fluxes of sediments, nitrogen (N), and phosphorus (P) in streams of southwestern Alaska. The purpose of this study was to investigate whether salmon act as net importers or net exporters of matter and nutrients from streams and how these roles change as a function of salmon population density. We measured discharge and concentrations of suspended sediments and total N and P every 7-14 days for up to four summers in 10 streams spanning a gradient in salmon densities. We statistically allocated whole-season fluxes to salmon activities, such as excretion and bioturbation, and to export by hydrologic discharge. In addition, we used counts of spawning salmon to estimate nutrient and matter imports by salmon to streams. Large seasonal pulses of suspended sediments, P, and N were associated with salmon spawning activities, often increasing export an order of magnitude higher than during pre-salmon levels. Years and streams with more salmon had significantly higher levels of export of sediments and nutrients. In addition, years with higher precipitation had higher background export of P and N. Salmon exported an average of the equivalent of 189%, 60%, and 55% of total matter, P, and N that salmon imported in their bodies. The relative magnitude of export varied; salmon exported more than their bodies imported in 80%, 20%, and 16% across all streams and years for sediments, P, and N, respectively. A bioassay experiment indicated that the P exported by salmon is directly available for use by primary producers in the downstream lake. These results demonstrate that salmon not only move nutrients upstream on large spatial scales via their migration from the ocean and subsequent death, but also redistribute matter and nutrients on finer spatial scales through their spawning activities.  相似文献   
718.
Guevara J  Avilés L 《Ecology》2007,88(8):2015-2023
Social and subsocial spiders of the genus Anelosimus exhibit an altitudinal pattern in their geographic distribution at tropical latitudes in the Americas. Social species, which capture prey cooperatively, occur primarily in the lowland rain forest and are absent from higher elevations, whereas subsocial species are common at higher elevations but absent from the lowland rain forest. Previous studies have suggested that differences in the size of potential insect prey along altitudinal gradients may explain this pattern as insects were found to be, on average, larger in lowland rain forests than at higher elevations. These studies, however, may have under-sampled the insect size composition of each habitat because only one sampling technique was used. Using a number of collection methods we sampled the insect size composition in the environments of social and subsocial spiders in this genus. We found that the average insect size in lowland rain forest habitats was indeed larger than at high-elevation cloud forests in eastern Ecuador. We also found that, even though the various techniques differed in the size of the insects they captured (visual searching and blacklighting yielding larger insects than beating, sweeping, or malaise trapping), they all caught, on average, larger insects in the lowlands. Overall, spider colonies in the lowlands caught larger prey than did spider colonies at higher elevations, paralleling differences in insect size distribution obtained by the various techniques in their respective environments.  相似文献   
719.
ABSTRACT: The Umatilla River Basin Fisheries Restoration Plan was initiated in the early 1980s to mitigate salmonid losses caused by hydroelectric development and habitat degradation. The objectives are to enhance the abundance of endemic steelhead and reintroduce extirpated chinook and coho salmon. The project prompted collaborative effort among federal, state, and tribal agencies, and local water users. It has incorporated habitat restoration, flow enhancement, fish passage improvements, and population supplementation through artificial production. Water exchanges have successfully increased minimum flows during spring and fall migration. While flows remain depressed compared to historic conditions, there is potential for improved habitat, passage, and homing. The mean adult‐to‐adult return rate of hatchery‐reared steelhead exceeded replacement and that of the naturally‐spawning population. Although the smolt‐to‐adult survival rates of hatchery‐reared fish fluctuate, salmonid escapement has increased in recent years, permitting steelhead and spring chinook harvest. Enumeration of potential spawners and observed redds reveals an increase in natural production of all supplemented species. Comparison of hatchery‐reared and naturally‐spawning steelhead populations revealed differences in life history characteristics (in age composition and sex ratios) though run timing and genetic stock compositions of the two components of the populations have not differed. Sustained monitoring is needed to determine benefits of integrating habitat restoration and artificial production in restoring salmonid populations.  相似文献   
720.
The distribution of reproductive success within societies is a key determinant of the outcomes of social evolution. Attempts to explain social diversity, therefore, require that we quantify reproductive skews and identify the mechanisms that generate them. Here, we address this priority using life history and genotypic data from >600 individuals in 40 wild groups of the cooperatively breeding white-browed sparrow weaver, Plocepasser mahali. We show that groups comprise up to six males and seven females, but within-group reproduction is completely monopolised by a single dominant male and female, while extra-group males sire 12–18 % of offspring. Strong within-group kin structure could frequently explain these monopolies, as subordinates had typically delayed dispersal from their natal groups and so frequently (1) lacked within-group outbreeding partners, and/or (2) stood to gain little from contesting dominant reproduction, being almost as related to the dominant’s young as they would have been to their own. Kin structure alone cannot account entirely for these monopolies, however, as they remained complete following the immigration of unrelated males and females. That subordinate females remain reproductively quiescent despite also showing comparable body condition to dominants, overlapping them substantially in age, and showing no evidence of elevated stress hormone levels raises the possibility that they exercise reproductive restraint due instead to a threat of action by dominants and/or deficits in offspring fitness that might arise if subordinates bred. Our findings highlight the complexity of the mechanisms that generate reproductive disparities in animal societies and the challenge of identifying them when skews are complete.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号