Environmental Science and Pollution Research - The failure of the centralized water supply system forced XY community to become more dependent on uncertain and unstable water sources. The results... 相似文献
Microbial communities are important for high composting efficiency and good quality composts. This study was conducted to compare the changes of physicochemical and bacterial characteristics in composting from different raw materials, including chicken manure (CM), duck manure (DM), sheep manure (SM), food waste (FW), and vegetable waste (VW). The role and interactions of core bacteria and their contribution to maturity in diverse composts were analyzed by advanced bioinformatics methods combined sequencing with co-occurrence network and structural equation modeling (SEM). Results indicated that there were obviously different bacterial composition and diversity in composting from diverse sources. FW had a low pH and different physiochemical characteristics compared to other composts but they all achieved similar maturity products. Redundancy analysis suggested total organic carbon, phosphorus, and temperature governed the composition of microbial species but key factors were different in diverse composts. Network analysis showed completely different interactions of core bacterial community from diverse composts but Thermobifida was the ubiquitous core bacteria in composting bacterial network. Sphaerobacter and Lactobacillus as core genus were presented in the starting mesophilic and thermophilic phases of composting from manure (CM, DM, SM) and municipal solid waste (FW, VW), respectively. SEM indicated core bacteria had the positive, direct, and the biggest (>?80%) effects on composting maturity. Therefore, this study presents theoretical basis to identify and enhance the core bacteria for improving full-scale composting efficiency facing more and more organic wastes.
Studies on applying the photochemical UV/TiO2 oxidation process to treat the lignin-containing wastewater for dissolved organic carbon (DOC), color and reducing A254 (the absorption at the wavelength of 254 nm) have been carried out. The data obtained in this study demonstrate that the UV/TiO2 process is effective in oxidizing the lignin thus reducing the color and DOC of the wastewater treated. The combined UV/TiO2 treatment can achieve better removal of DOC and color than the UV treatment alone. Color removal, based on American Dye Manufacture Index (ADMI) measurement, is greater than 99% if the pH is maintained at 3.0 with the addition of 1 g l(-1) TiO2. When 10 g l(-1) TiO2 is applied, the oxidation reduction potential (ORP) value is reached to result in an 88% removal of both DOC and color. A model was developed based on the variation of ORP during the photochemical reaction to simulate the decoloring process. The proposed model can be used to predict the color removal efficiency of the UV/TiO2 process. 相似文献
Sulfur hexafluoride (SF6) is an important gas for plasma etching processes in the semiconductor industry. SF6 intensely absorbs infrared radiation and, consequently, aggravates global warming. This study investigates SF6 abatement by nonthermal plasma technologies under atmospheric pressure. Two kinds of nonthermal plasma processes--dielectric barrier discharge (DBD) and combined plasma catalysis (CPC)--were employed and evaluated. Experimental results indicated that as much as 91% of SF6 was removed with DBDs at 20 kV of applied voltage and 150 Hz of discharge frequency for the gas stream containing 300 ppm SF6, 12% oxygen (O2), and 40% argon (Ar), with nitrogen (N2) as the carrier gas. Four additives, including Ar, O2, ethylene (C2H4), and H2O(g), are effective in enhancing SF6 abatement in the range of conditions studied. DBD achieves a higher SF6 removal efficiency than does CPC at the same operation condition. But CPC achieves a higher electrical energy utilization compared with DBD. However, poisoning of catalysts by sulfur (S)-containing species needs further investigation. SF6 is mainly converted to SOF2, SO2F4, sulfur dioxide (SO2), oxygen difluoride (OF2), and fluoride (F2). They do not cause global warming and can be captured by either wet scrubbing or adsorption. This study indicates that DBD and CPC are feasible control technologies for reducing SF6 emissions. 相似文献
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered. 相似文献
Eight samples of processed food salt collected from five plants in Korea were analyzed for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) using liquid-liquid extraction, clean-up procedures, and high resolution gas chromatography-high resolution mass spectrometry. The study included the analyses of two kinds of salt product sample: bamboo-salt and parched salt. The levels of toxic PCDD/Fs found in the salt product samples were extremely low: the results revealed TEQ levels ranging between the sub pg TEQ/g and sub fg TEQ/g. The differences in the TEQ values of toxic PCDD/F were observed between the salt product samples, which were treated with different frequency of baking using four different fuels (firewood, pine wood, pine resin, and indirect heating by gas) at temperatures from 300 to 2000 degrees C. In bamboo-salt samples, the concentrations and TEQ values of toxic PCDD/Fs ranged between 0.57-66 pg/g and 5.7x10(-5)-0.64 pg TEQ/g, respectively. PCDD/Fs levels in bamboo-salts baked by firewood were found to be higher than those baked by pinewood or pine resin. In parched salt samples, the concentrations and TEQ values of toxic PCDD/Fs ranged between 0.97-3.7 pg/g and 0.0097-0.017 pg TEQ/g, respectively. The data was discussed regarding the concentration and the distribution pattern of congeners. 相似文献
Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation. 相似文献
Compound pollution refers to two or more kinds of pollutants with different properties, a pollutant from different sources, or the simultaneous existence of two or more different types of pollutants in the same environment. In this study, we aimed to investigate the individual and combined toxicity of the insecticide imidacloprid (IMI), the herbicide acetochlor (ACT), and the fungicide tebuconazole (TBZ) to zebrafish. The acute toxicity test results showed that the 96-h LC50 values of IMI, ACT, and TBZ were 276.84 (259.62–294.35) mg active ingredient (a.i.) L−1, 1.52 (1.34–1.74) mg a.i. L−1, and 8.16 (7.7–8.6) mg a.i. L−1, respectively. The combinations of IMI, ACT, and TBZ with toxicity ratios of 1:2:2, 1:4:4, 2:4:1, and 4:1:4 displayed synergistic toxic effects on zebrafish, while the toxicity ratios of 1:1:1, 1:1:2, 2:1:2, 2:2:1, and 4:2:1 of IMI, ACT, and TBZ, respectively, exhibited antagonistic toxic effects on zebrafish. The following experiments were performed with a toxicity ratio of 1:4:4 (IMI:ACT:TBZ). The activities of four enzyme biomarkers related to oxidative stress in the liver, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and malondialdehyde (MDA) content were evaluated in each exposure group on days 7, 14, 21, and 28. Compared with those of the control group, the activities of CAT, SOD, and GST and the MDA content were significantly altered at different time points in the individual and combined exposure groups. Additionally, the activities of CAT, SOD, and GST and the MDA content were significantly altered in the combined group compared with those of the individual group after 14 days or 21 days of exposure. Therefore, it was confirmed that combined toxicity studies are indispensable in risk assessment. 相似文献
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation. 相似文献
As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery. 相似文献