首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   18篇
  国内免费   5篇
安全科学   22篇
废物处理   7篇
环保管理   63篇
综合类   35篇
基础理论   79篇
环境理论   1篇
污染及防治   48篇
评价与监测   11篇
社会与环境   17篇
灾害及防治   11篇
  2023年   7篇
  2022年   4篇
  2021年   8篇
  2020年   13篇
  2019年   3篇
  2018年   19篇
  2017年   19篇
  2016年   20篇
  2015年   20篇
  2014年   14篇
  2013年   25篇
  2012年   18篇
  2011年   20篇
  2010年   21篇
  2009年   14篇
  2008年   17篇
  2007年   15篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2000年   5篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有294条查询结果,搜索用时 296 毫秒
101.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   
102.
Inhalation of ambient particulate matter causes morbidity and mortality in humans. One hypothesized mechanism of toxicity is the particle-induced formation of reactive oxygen species (ROS) - including the highly damaging hydroxyl radical ((·)OH) - followed by inflammation and a variety of diseases. While past studies have found correlations between ROS formation and a variety of metals, there are no quantitative measurements of (·)OH formation from transition metals at concentrations relevant to 24-hour ambient particulate exposure. This research reports specific and quantitative measurements of (·)OH formation from 10 individual transition metals (and several mixtures) in a cell-free surrogate lung fluid (SLF) with four antioxidants: ascorbate, citrate, glutathione, and uric acid. We find that Fe and Cu can produce (·)OH under all antioxidant conditions as long as ascorbate is present and that mixtures of the two metals synergistically increase (·)OH production. Manganese and vanadium can also produce (·)OH under some conditions, but given that their ambient levels are typically very low, these metals are not likely to chemically produce significant levels of (·)OH in the lung fluid. Cobalt, chromium, nickel, zinc, lead, and cadmium do not produce (·)OH under any of our experimental conditions. The antioxidant composition of our SLF significantly affects (·)OH production from Fe and Cu: ascorbate is required for (·)OH formation, citrate increases (·)OH production from Fe, and both citrate and glutathione suppress (·)OH production from Cu. MINTEQ ligand speciation modeling indicates that citrate and glutathione affect (·)OH production by changing metal speciation, altering the reactivity of the metals. In the most realistic SLF (i.e., with all four antioxidants), Fe generates approximately six times more (·)OH than does the equivalent amount of Cu. Since levels of soluble Fe in PM are typically higher than those of Cu, our results suggest that Fe dominates the chemical generation of (·)OH from deposited particles in the lungs.  相似文献   
103.
Emerging water contaminants derived from unleaded gasoline such as methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME), are in need of effective bioremediation technologies for restoring water resources. In order to design the conditions of a future groundwater bioremediating biofilter, this work assesses the potential use of Acinetobacter calcoaceticus M10, Rhodococcus ruber E10 and Gordonia amicalis T3 for the removal of MTBE, ETBE and TAME in consortia or as individual strains. Biofilm formation on an inert polyethylene support material was assessed with scanning electron microscopy, and consortia were also analysed with fluorescent in situ hybridisation to examine the relation between the strains. A. calcoaceticus M10 was the best coloniser, followed by G. amicalis T3, however, biofilm formation of pair consortia favoured consortium M10-E10 both in formation and activity. However, degradation batch studies determined that neither consortium exhibited higher degradation than individual strain degradation. The physiological state of the three strains was also determined through flow cytometry using propidium iodide and 3′-dihexylocarbocyanine iodide thus gathering information on their viability and activity with the three oxygenates since previous microbial counts revealed slow growth. Strain E10 was observed to have the highest physiological activity in the presence of MTBE, and strain M10 activity with TAME was only maintained for 24 h, thus we believe that biotransformation of MTBE occurs within the active periods established by the cytometry analyses. Viable cell counts and oxygenate removal were determined in the presence of the metabolites tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA), resulting in TBA biotransformation by M10 and E10, and TAA by M10. Our results show that A. calcoaceticus M10 and the consortium M10-E10 could be adequate inocula in MTBE and TAME bioremediating technologies.  相似文献   
104.
This study examined social capital development in three all-terrain vehicles (ATV) clubs in Maine using an adapted version of Lin’s (2001) social capital theory model. The structural components of social capital identified included collective assets and individual assets in the form of normative behavior and trust relationships. Also identified were counter-norms for individual ATV riders identified as having divergent norms from club members. The second component of social capital is access to and mobilization of network contacts and resources. Access networks in the context of the ATV clubs studied were identified as community and landowner relations while mobilization of resources was existent in club membership attempts toward self-governance and efforts of the statewide “umbrella” organization. Instrumental outcomes benefit society and expressive outcomes benefit the individual. Both types of returns are present in the data suggesting that ATV clubs are creating social capital. This is important information to clubs who desire to market themselves, improve their reputations, and enhance their volunteer association. It is of further interest to state governments who fund clubs through trail grants as proof that a return on investment is being realized. Theoretical and applied implications for these and other types of recreation-based volunteer associations (e.g., clubs, friends groups, advocacy groups) are presented.  相似文献   
105.
Recent studies suggest that human activities accelerate the production of reactive nitrogen on a global scale. Increased nitrogen emissions may lead to environmental impacts including photochemical air pollution, reduced visibility, changes in biodiversity, and stratospheric ozone depletion. In the last 50 yr, emissions of ammonia (NH3), which is the most abundant form of reduced reactive nitrogen in the atmosphere, have significantly increased as a result of intensive agricultural management and greater livestock production in many developed countries. These agricultural production practices are increasingly subject to governmental regulations intended to protect air resources. It is therefore important that an accurate and robust agricultural emission factors database exist to provide valid scientific support of these regulations. This paper highlights some of the recent work that was presented at the 2006 Workshop on Agricultural Air Quality in Washington, D.C. regarding NH3 emissions estimates and emission factors from agricultural sources in the U.S. and Europe. In addition, several best management practices are explored as the scientific community attempts to maximize the beneficial use of reactive nitrogen while simultaneously minimizing negative environmental impacts.  相似文献   
106.
Abstract: Residential water demand is a function of several factors, some of which are within the control of water utilities (e.g., price, water restrictions, rebate programs) and some of which are not (e.g., climate and weather, demographic characteristics). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent drought period (2000‐2005). Findings expand the understanding of residential demand in at least three salient ways: first, by documenting that pricing and outdoor water restriction policies interact with each other ensuring that total water savings are not additive of each program operating independently; second, by showing that the effectiveness of pricing and restrictions policies varies among different classes of customers (i.e., low, middle, and high volume water users) and between predrought and drought periods; and third, in demonstrating that real‐time information about consumptive use (via the Water Smart Reader) helps customers reach water‐use targets.  相似文献   
107.
Wastewater treatment plants (WWTPs) are a potential of source of polycyclic musks in the aquatic environment. In this study, contamination profiles and mass flow of polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[gamma]-2-benzopyran (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), and HHCB-lactone (oxidation product of HHCB), in two WWTPs, one located in Kentucky (Plant A, rural area) and the other in Georgia (Plant B, urban), USA, were determined. HHCB, AHTN and HHCB-lactone were detected in the influent, effluent, and sludge samples analyzed. The concentrations in wastewater samples varied widely, from 10 to 7,030 ng/l, 13 to 5,400 ng/l, and 66 to 790 ng/l, for HHCB, AHTN, and HHCB-lactone, respectively. Sludge samples contained HHCB at <0.02-36 microg/g dry weight, AHTN at <0.02-7.2 microg/g dry weight, and HHCB-lactone at <0.05-17 microg/g dry weight. Based on the daily flow rates and mean concentrations of polycyclic musks, the estimated discharge of total polycyclic musks to the rivers was 21 g/day from Plant A and 31 g/day from Plant B. Mass balance analysis suggested that only 30% of HHCB and AHTN entering the plants was accounted for in the effluent and the sludge. Removal efficiencies of HHCB and AHTN in the two WWTPs ranged from 72% to 98%. In contrast, HHCB-lactone concentrations increased following the treatment. Concentrations of polycyclic musks in sludge were on the order of several parts per million. Incineration of sludge at one plant reduced the concentration of polycyclic musks.  相似文献   
108.
Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd‐infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post‐metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population‐level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.  相似文献   
109.
The Great Lakes are an important environmental and economic resource for Canada and the United States. The ecological integrity of the Great Lakes, however, is becoming increasingly threatened by a number of persistent, bio-accumulative and harmful chemicals that enter the Great Lakes ecosystem through fluvial and atmospheric deposition. Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardant, are among such chemicals, whose concentration in the Great Lakes has greatly increased in recent years. Despite growing concern over the possible health and environmental effects of these compounds, only four of the eight Great Lakes states have enacted regulations to ban/restrict the use of PBDE while the two Canadian Great Lakes provinces are yet to endorse any regulation. Of the three main commercial PBDE mixtures (pentaBDE, octaBDE and decaBDE), penta- and octaBDE are no longer manufactured or imported into the United States and Canada. DecaBDE, however, still finds use in a variety of products. In the present paper, the authors review the current regulations and policies for managing PBDEs in the Great Lakes jurisdictions and briefly review commercially available non-bromine chemical alternatives to PBDE. As these alternatives are comparatively more expensive than PBDE, future adoption of more eco-friendly flame retardants by the polymer industry will likely depend on stricter legislation regulating the use of PBDE and/or an increased public demand for PBDE-free products.  相似文献   
110.
Climate change will require novel conservation strategies. One such tactic is a coarse‐filter approach that focuses on conserving nature's stage (CNS) rather than the actors (individual species). However, there is a temporal mismatch between the long‐term goals of conservation and the short‐term nature of most ecological studies, which leaves many assumptions untested. Paleoecology provides a valuable perspective on coarse‐filter strategies by marshaling the natural experiments of the past to contextualize extinction risk due to the emerging impacts of climate change and anthropogenic threats. We reviewed examples from the paleoecological record that highlight the strengths, opportunities, and caveats of a CNS approach. We focused on the near‐time geological past of the Quaternary, during which species were subjected to widespread changes in climate and concomitant changes in the physical environment in general. Species experienced a range of individualistic responses to these changes, including community turnover and novel associations, extinction and speciation, range shifts, changes in local richness and evenness, and both equilibrium and disequilibrium responses. Due to the dynamic nature of species responses to Quaternary climate change, a coarse‐filter strategy may be appropriate for many taxa because it can accommodate dynamic processes. However, conservationists should also consider that the persistence of landforms varies across space and time, which could have potential long‐term consequences for geodiversity and thus biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号