首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30369篇
  免费   344篇
  国内免费   457篇
安全科学   955篇
废物处理   1441篇
环保管理   3678篇
综合类   5067篇
基础理论   7953篇
环境理论   18篇
污染及防治   8037篇
评价与监测   2070篇
社会与环境   1773篇
灾害及防治   178篇
  2023年   140篇
  2022年   322篇
  2021年   316篇
  2020年   240篇
  2019年   284篇
  2018年   478篇
  2017年   479篇
  2016年   742篇
  2015年   568篇
  2014年   886篇
  2013年   2419篇
  2012年   1060篇
  2011年   1434篇
  2010年   1169篇
  2009年   1196篇
  2008年   1437篇
  2007年   1485篇
  2006年   1264篇
  2005年   1095篇
  2004年   984篇
  2003年   1077篇
  2002年   949篇
  2001年   1238篇
  2000年   864篇
  1999年   517篇
  1998年   348篇
  1997年   358篇
  1996年   358篇
  1995年   423篇
  1994年   446篇
  1993年   352篇
  1992年   374篇
  1991年   353篇
  1990年   386篇
  1989年   341篇
  1988年   296篇
  1987年   278篇
  1986年   223篇
  1985年   248篇
  1984年   265篇
  1983年   257篇
  1982年   241篇
  1981年   222篇
  1980年   175篇
  1979年   194篇
  1978年   176篇
  1975年   140篇
  1974年   117篇
  1972年   130篇
  1971年   131篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   
192.
To quickly and accurately quantify the material release in process units, gas detectors may be placed according to the results of gas dispersion modeling. DNV's PHAST software is one of the most useful and reliable tools for material dispersion modeling. In this software, fluid dispersion is modeled based on the process conditions, the weather conditions and the specifications of the material release point. However, varying weather conditions throughout the year and the exact determination of the release point on the plot plan and the release elevation are problematic; these issues cause the results to be non-exact and non-integrated. Choosing the most appropriate conditions is challenging. In this paper, a scheme was provided to select the most appropriate conditions for gas dispersion modeling. This scheme approaches modeling based on the worst-case scenario (the situation in which the dispersed gas reaches the detector later in comparison to the other cases). Therefore, different weather conditions, release elevations and release points on the plot plan were modeled for an absorber tower of the Gonbadli Dehydration Unit of the Khangiran Refinery. The worst case of each release condition was then chosen. Finally, gas detectors were placed using the gas dispersion modeling results based on the worst-case scenario.  相似文献   
193.
In this study, an Integrated Simulation-Data Envelopment Analysis (DEA) approach is presented for optimum facility layout of maintenance workshop in a gas transmission unit. The process of repair of incoming parts includes various operations on different facilities. The layout problem in this system involves determining the optimum location of all maintenance shop facilities. Layout optimization plays a crucial role in this type of problems in terms of increasing the efficiency of main production line. Standard types of layouts including U, S, W, Z and straight lines are considered. First, the maintenance workshop is modeled with discrete-event-simulation. Time in system, average waiting time, average machine utilization, average availability of facilities, average queue length of facilities (AL) and average operator utilization are obtained from simulation as key performance indicators (KPIs) of DEA. Also, safety index and number of operators are considered as other KPIs. Finally, a unified non-radial Data Envelopment Analysis (DEA) is presented with respect to the stated KPIs to rank all layouts alternatives and to identify the best configuration. Principle Component Analysis (PCA) is used to validate and verify the results. Previous studies do not consider safety factor in layout design problems. This is the first study that presents an integrated approach for identification of optimum layout in a maintenance workshop of gas transmission unit by incorporating safety and conventional factors.  相似文献   
194.
195.
Plastic was tested to select biofilm support media that would enhance nitrification in the presence of heterotrophs. Eight different types (acrylonitrile butadiene styrene, nylon, polycarbonate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinyl chloride and tufnol) were immersed in an aerobic fed-batch reactor receiving domestic settled wastewater. Nitrification rates did not correlate with biomass concentrations, nor surface roughness of the plastics as measured by atomic force microscopy (AFM). The maximum nitrification rate of 1.5 g/m2 d?1 was obtained from biofilms growing on PTFE which had the lowest surface adhesion force (8 nN). Nitrification rates for the biofilms were inversely correlated with the attraction forces as measured by AFM.  相似文献   
196.
Experimental and theoretical studies were conducted to investigate the pyrophoricity and water-reactivity risks associated with employing sodium alanate (NaAlH4) complex metal hydride in on-board vehicular hydrogen (H2) storage systems. The ignition and explosivity of NaAlH4 upon exposure to oxidizers in air or water were attributed to the spontaneous formation of stable hydroperoxyl intermediates on the NaAlH4 surface and/or H2 production, as well as the large driving force for NaAlH4 conversion to favorable hydroxide products predicted by atomic and thermodynamic modeling. The major products from NaAlH4 exposure to air: NaAl(OH)4, gibbsite and bayerite Al(OH)3, and Na2CO3 observed by XRD, were identified to be formed by surface-controlled reactions. The reactivity risks were significantly minimized, without compromising de-/re-hydrogenation cyclability, by compacting NaAlH4 powder into wafers to reduce the available surface area. These core findings are of significance to risk mitigation and H2 safety code and standard development for the safe use of NaAlH4 for on-board H2 storage in light-duty vehicles.  相似文献   
197.
It is important to screen strains that can decompose polycyclic aromatic hydrocarbons (PAHs) completely and rapidly with good adaptability for bioremediation in a local area. A bacterial strain JM2, which uses phenanthrene as its sole carbon source, was isolated from the active sewage sludge from a chemical plant in Jilin, China and identified as Pseudomonas based on 16S rDNA gene sequence analysis. Although the optimal growth conditions were determined to be pH 6.0 and 37℃, JM2 showed a broad pH and temperature profile. At pH 4.5 and 9.3, JM2 could degrade more than 40% of fluorene and phenanthrene (50 mg/L each) within 4 days. In addition, when the temperature was as low as 4℃, JM2 could degrade up to 24% fluorene and 12% phenanthrene. This showed the potential for JM2 to be applied in bioremediation over winter or in cold regions. Moreover, a nutrient augmentation study showed that adding formate into media could promote PAH degradation, while the supplement of salicylate had an inhibitive effect. Furthermore, in a metabolic pathway study, salicylate, phthalic acid, and 9-fluorenone were detected during the degradation of fluorene or phenanthrene. In conclusion, Pseudomonas sp. JM2 is a high performance strain in the degradation of fluorene and phenanthrene under extreme pH and temperature conditions. It might be useful in the bioremediation of PAHs.  相似文献   
198.
We used aerated systems to assess the influence of the bacterioplankton community on cyanobacterial blooms in algae/post-bloom of Lake Taihu, China. Bacterioplankton community diversity was evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) fingerprinting. Chemical analysis and nitrogen dynamic changes illustrated that NH4+-N was nitrified to NO2-N and NO3-N by bacterioplankton. Finally, NH4+-N was exhausted and NO3-N was denitrified to NO2-N, while the accumulation of NO2-N indicated that bacterioplankton with completely aerobic denitrification ability were lacking in the water samples collected from Lake Taihu. We suggested that adding completely aerobic denitrification bacteria(to denitrify NO2-N to N2)would improve the water quality. PCR-DGGE and sequencing results showed that more than 1/3 of the bacterial species were associated with the removal of nitrogen, and Acidovorax temperans was the dominant one. PCR-DGGE, variation of nitrogen, removal efciencies of chlorophyll-a and canonical correspondence analysis indicated that the bacterioplankton significantly influenced the physiological and biochemical changes of cyanobacteria. Additionally, the unweighted pair-group method with arithmetic means revealed there was no obvious harm to the microecosystem from aeration. The present study demonstrated that bacterioplankton can play crucial roles in aerated ecosystems, which could control the impact of cyanobacterial blooms in eutrophicated fresh water systems.  相似文献   
199.
IntroductionTheuseofchemicals,includingpesticides,hasbecomeanintegralandeconomicallyessentialpartofmodernagriculture.Pesticide?..  相似文献   
200.
We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials, which were formed by layered deposition of multiple anatase TiO2 nanosheets. The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet, including crystal steps and edges, thereby fixing the Au–TiO2 perimeter interface. Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au–TiO2 interface. The doped Au induced the formation of oxygen vacancies in the Au–TiO2 interface. Such vacancies are essential for generating active oxygen species (*O) on the TiO2 surface and Ti3 + ions in bulk TiO2. These ions can then form Ti3 +–O–Ti4 + species, which are known to enhance the catalytic activity of formaldehyde (HCHO) oxidation. These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号