首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22060篇
  免费   267篇
  国内免费   231篇
安全科学   704篇
废物处理   967篇
环保管理   3620篇
综合类   2791篇
基础理论   5716篇
环境理论   9篇
污染及防治   6151篇
评价与监测   1439篇
社会与环境   992篇
灾害及防治   169篇
  2022年   143篇
  2021年   194篇
  2020年   124篇
  2019年   192篇
  2018年   307篇
  2017年   322篇
  2016年   498篇
  2015年   430篇
  2014年   605篇
  2013年   1992篇
  2012年   739篇
  2011年   979篇
  2010年   777篇
  2009年   875篇
  2008年   1051篇
  2007年   1093篇
  2006年   957篇
  2005年   777篇
  2004年   810篇
  2003年   772篇
  2002年   751篇
  2001年   826篇
  2000年   655篇
  1999年   393篇
  1998年   298篇
  1997年   278篇
  1996年   328篇
  1995年   324篇
  1994年   311篇
  1993年   289篇
  1992年   268篇
  1991年   223篇
  1990年   249篇
  1989年   223篇
  1988年   209篇
  1987年   203篇
  1986年   185篇
  1985年   179篇
  1984年   215篇
  1983年   214篇
  1982年   198篇
  1981年   214篇
  1980年   175篇
  1979年   175篇
  1978年   129篇
  1977年   112篇
  1976年   97篇
  1975年   107篇
  1973年   98篇
  1972年   104篇
排序方式: 共有10000条查询结果,搜索用时 797 毫秒
671.
This study is part of our investigations about the release of persistent organic pollutants from melting Alpine glaciers and the relevance of the glaciers as secondary sources of legacy pollutants. Here, we studied the melt-related release of polychlorinated biphenyls (PCBs) in proglacial lakes and glacier streams of the catchment of the Silvretta glacier, located in the Swiss Alps. To explore a spatial and temporal distribution of chemicals in glacier melt, we combined two approaches: (1) analysing a sediment record as an archive of past remobilization and (2) passive water sampling to capture the current release of PCBs during melt period. In addition, we determined PCBs in a non-glacier-fed stream as a reference for the background pollutant level in the area. The PCBs in the sediment core from the Silvretta lake generally complied with trends of PCB emissions into the environment. Elevated concentrations during the most recent ten years, comparable in level with times of the highest atmospheric input, were attributed to accelerated melting of the glacier. This interpretation is supported by the detected PCB fractionation pattern towards heavier, less volatile congeners, and by increased activity concentrations of the radioactive tracer 137Cs in this part of the sediment core. In contrast, PCB concentrations were not elevated in the stream water, since no significant difference between pollutant concentrations in the glacier-fed and the non-glacier-fed streams was detected. In stream water, no current decrease of the PCBs with distance from the glacier was observed. Thus, according to our data, an influence of PCBs release due to accelerated glacier melt was only detected in the proglacial lake, but not in the other compartments of the Silvretta catchment.  相似文献   
672.
673.
The occurrence of five pharmaceuticals, consisting of four anti-inflammatory and one antiepileptic drug, was studied by passive sampling and grab sampling in northern Lake Päijänne and River Vantaa. The passive sampling was performed by using Chemcatcher® sampler with a SDB-RPS Empore disk as a receiving phase. In Lake Päijänne, the sampling was conducted during summer 2013 at four locations near the discharge point of a wastewater treatment plant and in the years 2013 and 2015 at four locations along River Vantaa. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations of carbamazepine, diclofenac, ibuprofen, ketoprofen, and naproxen in Lake Päijänne determined by passive sampling ranged between 1.4–2.9 ng L?1, 15–35 ng L?1, 13–31 ng L?1, 16–27 ng L?1, and 3.3–32 ng L?1, respectively. Similarly, the results in River Vantaa ranged between 1.2–40 ng L?1, 15–65 ng L?1, 13–33 ng L?1, 16–31 ng L?1, and 3.3–6.4 ng L?1. The results suggest that the Chemcatcher passive samplers are suitable for detecting pharmaceuticals in lake and river waters.  相似文献   
674.
A novel approach for the electrospinning and functionalization of nanocatalyst-loaded polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) composite grafted with acrylic acid (AA; which form polyacrylic acid (PAA) brush) and decorated with silver (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd) designed for the dechlorination and photodegradation of pesticides was carried out. PAN was used both as a nitrogen dopant as well as a co-polymer. Smooth nanofibers were obtained by electrospinning a solution of 12:2 wt.% PVDF/PAN blend using dimethylformamide (DMF) as solvent. The nanofibers were grafted with AA by free-radical polymerization using 2,2′azobis(2-methylpropionitrile) (AIBN) as initiator. Both bimetallic iron–palladium (Fe–Pd) and titania (TiO2) nanoparticles (NP) were anchored on the grafted nanofibers via the carboxylate groups by in situ and ex situ synthesis. The Fe–Pd and nitrogen-doped TiO2 nanoparticles were subsequently used for dechlorination and oxidation of target pollutants (dieldrin, chlorpyrifos, diuron, and fipronil) to benign products. Structural and chemical characterizations of the composites were done using various techniques. These include surface area and porosity analyzer (ASAP) using the technique by Brunner Emmett Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM) analyses were done. After dechlorination, the transformation products (TPs) for dieldrin, chlorpyrifos, diuron, and fipronil were obtained and identified using two-dimensional gas chromatography (time-of-flight) with a mass spectrometer detector (GCxGC-TOFMS). Analysis of total organic carbon (TOC) was carried out and used to extrapolate percentage mineralization. Experimental results showed that dechlorination efficiencies of 96, 93, 96, and 90 % for 1, 2, 2, and 3 h treatment period were respectively achieved for 5 ppm solutions of dieldrin, chlorpyrifos, diuron, and fipronil. The dechlorination of dieldrin, diuron, and fipronil follows first-order kinetics while that of chlorpyrifos followed pseudo-first order. Mineralization performance of 34 to 45 % were recorded when Fe–Pd was used, however upon electrospinning, doping, and grafting (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd composite); it significantly increased to 99.9999 %. This composite reveals great potential for dechlorination and mineralization of pesticides in contaminated water.  相似文献   
675.
Environmental Science and Pollution Research - Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and...  相似文献   
676.
Environmental Science and Pollution Research - The objective of this study was to monitor a newly constructed wetland (CW) in north Wales, UK, to assess whether it contributes to an improvement in...  相似文献   
677.
The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through “Pre-Incident” response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test.Implications: Management of waste is a critical element of activities dealing with remediation of buildings and outdoor areas following a biological contamination incident. Waste management must be integrated into the overall remediation process, along with sampling, decontamination, resource management, and other important response elements, rather than being a stand-alone activity. The results presented in this paper will provide decision makers and emergency planners at the federal/state/tribal/local level information that can be used to integrate waste management into an overall systems approach to planning and response activities.  相似文献   
678.
Although networks of environmental monitors are constantly improving through advances in technology and management, instances of missing data still occur. Many methods of imputing values for missing data are available, but they are often difficult to use or produce unsatisfactory results. I-Bot (short for “Imputation Robot”) is a context-intensive approach to the imputation of missing data in data sets from networks of environmental monitors. I-Bot is easy to use and routinely produces imputed values that are highly reliable. I-Bot is described and demonstrated using more than 10 years of California data for daily maximum 8-hr ozone, 24-hr PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm), mid-day average surface temperature, and mid-day average wind speed. I-Bot performance is evaluated by imputing values for observed data as if they were missing, and then comparing the imputed values with the observed values. In many cases, I-Bot is able to impute values for long periods with missing data, such as a week, a month, a year, or even longer. Qualitative visual methods and standard quantitative metrics demonstrate the effectiveness of the I-Bot methodology.Implications: Many resources are expended every year to analyze and interpret data sets from networks of environmental monitors. A large fraction of those resources is used to cope with difficulties due to the presence of missing data. The I-Bot method of imputing values for such missing data may help convert incomplete data sets into virtually complete data sets that facilitate the analysis and reliable interpretation of vital environmental data.  相似文献   
679.
Inorganic emissions from livestock production and subsequent deposition of these ions can be a major source of pollution, causing nitrogen enrichment, eutrophication, acidification of soils and surface waters, and aerosol formation. In the poultry house, ammonia and hydrogen sulfide emissions can also adversely affect the health, performance, and welfare of both animals and human operators. The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matter (SPM) to serve as carriers for odorous compounds such as ammonium ions and other inorganic compounds (e.g., phosphate, sulfate, nitrate, etc.). SPM is generated from the feed, animal manure, and the birds themselves. A large portion of odor associated with exhaust air from poultry houses is SPM that has absorbed odors from within the houses. Understanding the fate and transport processes of ammonia and other inorganic emissions in poultry houses is a necessary first step in utilizing the appropriate abatement strategies. In this study, the examination and characterization of ammonium ions, major components of odors and toxic gases from poultry operations, and other ions in suspended particulate matter in a broiler house were carried out using particle trap impactors. The SPM from the particle trap impactors was extracted and analyzed for its ionic species using ion chromatography (IC). The results showed concentrations of polyatomic ions in suspended particulate matter were found to increase with successive flocks and were highly concentrated in the larger size particulate matter. In addition, the ions concentrations appeared to reach a maximum at the middle of flock age (around the fourth week), tapering off toward the end in a given flock (possibly due to ventilation rates to cool off larger birds). Thus, it can be inferred that aged of bedding materials affects the ionic concentrations in aerosol particulate matter more than the age of the birds.

Implications: In the poultry house, toxic gas emissions can adversely affect the health, performance, and welfare of both animals and human operators. The persistence of these toxic pollutants from poultry houses may be due to the ability of suspended particulate matter (SPM) to serve as carriers for these compounds (inorganic ions). Our study showed that polyatomic ions in suspended particulate matter were found to increase with successive flocks and were highly concentrated in the larger size SPM. Understanding the effect of management practices on poultry air emissions will lead to innovative best management practices to safeguard the health and welfare of the animals as well as those of the poultry operators, along with reducing the impact of potential air pollution on the environment.  相似文献   

680.
Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号