首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4960篇
  免费   83篇
  国内免费   54篇
安全科学   215篇
废物处理   242篇
环保管理   1334篇
综合类   442篇
基础理论   1143篇
环境理论   5篇
污染及防治   1155篇
评价与监测   338篇
社会与环境   173篇
灾害及防治   50篇
  2024年   20篇
  2023年   32篇
  2022年   25篇
  2021年   53篇
  2020年   41篇
  2019年   73篇
  2018年   70篇
  2017年   89篇
  2016年   114篇
  2015年   112篇
  2014年   108篇
  2013年   548篇
  2012年   178篇
  2011年   261篇
  2010年   191篇
  2009年   189篇
  2008年   258篇
  2007年   263篇
  2006年   240篇
  2005年   166篇
  2004年   187篇
  2003年   192篇
  2002年   173篇
  2001年   85篇
  2000年   107篇
  1999年   102篇
  1998年   77篇
  1997年   66篇
  1996年   77篇
  1995年   79篇
  1994年   67篇
  1993年   67篇
  1992年   75篇
  1991年   46篇
  1990年   55篇
  1989年   42篇
  1988年   35篇
  1987年   43篇
  1986年   47篇
  1985年   40篇
  1984年   45篇
  1983年   50篇
  1982年   38篇
  1981年   56篇
  1980年   46篇
  1979年   23篇
  1978年   26篇
  1977年   18篇
  1975年   20篇
  1971年   15篇
排序方式: 共有5097条查询结果,搜索用时 15 毫秒
761.
762.
Amino acids constitute one of the largest inputs of organic nitrogen (N) to most polar soils and have been hypothesized to be important in regulating vegetational succession and productivity in Arctic ecosystems. Our understanding of amino acid cycling in these soils, however, is poor. The aim of this study was to investigate the size and rate of turnover of the amino acid pool in a range of Arctic and Antarctic soils. Our results indicate that in polar soils with either high or low ornithogenic inputs the amino acid pool is small in comparison to the inorganic N pool (NO? 3 and NH+ 4). The free amino acid pool constituted only a small proportion of the total dissolved organic nitrogen (DON) pool in these soils. Here we show that these low concentrations may be due to rapid use by the soil microbial community in both Arctic and Antarctic soils. The turnover of the amino acid pool in soil was extremely rapid, with a half-life ranging from 2 to 24 h, indicating that this N pool can be turned over many hundred times each summer when polar soils are frequently unfrozen. The implications of amino acids in N cycling and plant and microbial nutrition are discussed.  相似文献   
763.
Cyclodextrin‐enhanced flushing of contaminants from the subsurface is a promising innovative remediation technology. It will become more economically viable at more sites if methods can be developed to recover and reconcentrate the cyclodextrin solution after it has been flushed through an aquifer. The goal of this study was to determine if membrane technology is capable of meeting that need. Five membranes with different material properties were tested for this purpose in the laboratory. The results of these tests indicate that there are large differences both in the efficiency of these membranes to extract hydroxpropyl‐β‐cyclodextrin (HPCD) and their stability when exposed to trichloroethylene (TCE) at concentrations near aqueous solubility. Not only does the molecular weigh cutoff (MWCO) of a membrane determine if HPCD can be retained, but crucial selection criteria are the membrane's resistance and compatibility with TCE. Of the five membrane materials tested, only two (polymer composite membrane and polysulfone) met both these requirements. The polymer composite membrane (MPF‐44) showed reliable and stable HPCD recoveries (>95 percent) even when exposed to high TCE concentrations. The polysulfone membrane showed high HPCD recoveries, 88.5 ± 0.4 percent to 97 percent ±1 percent for ultrafiltration and nanofiltration membranes, respectively. However, membrane swelling and deterioration became a problem at high TCE concentrations (>1,000 mg/L). These problems diminished when the TCE concentration was less than 1 mg/L. Field tests demonstrated that batch mode treatment by ultrafiltration doubled the cyclodextrin concentration from 5 to 10 percent within three hours at a constant operating pressure of 13 psi. Under continuous single‐pass treatment conditions, cyclodextrin concentration also increased, although the rate of increase was much smaller than in batch mode. Overall, these tests showed that cyclodextrin recovery is possible under field conditions. © 2007 Wiley Periodicals, Inc.  相似文献   
764.
The data mining/groundwater modeling methodology developed in McDade et al. (2013) was performed to determine if matrix diffusion is a plausible explanation for the lower‐concentration but persistent chlorinated solvent plumes in the groundwater‐bearing units at three different pump‐and‐treat systems. Capture‐zone maps were evaluated, and eight wells were identified that did not draw water from any of the historical source areas but captured water from the sides of the plume. Two groundwater models were applied to study the persistence of the plumes in the absence of contributions from the historical source zones. In the wells modeled, the observed mass discharge generally decreased by about one order of magnitude or less over 4 to 10 years of pumping, and 1.8 to 17 pore volumes were extracted. In five of the eight wells, the matrix diffusion model fit the data much better than the advection dispersion retardation model, indicating that matrix diffusion better explains the persistent plume. In the three other wells, confounding factors, such as a changing capture zone over time (caused by changes in pumping rates in adjacent extraction wells); potential interference from a high‐concentration unremediated source zone; and limited number of pore volumes removed made it difficult to confirm that matrix diffusion processes were active in these areas. Overall, the results from the five wells indicate that mass discharge rates from the pumping wells will continue to show a characteristic “long tail'' of mass removal from zones affected by active matrix diffusion processes. Future site management activities should include matrix diffusion processes in the conceptual site models for these three sites. © 2013 Wiley Periodicals, Inc.  相似文献   
765.
766.
    
Emissions of sulphur and oxidized nitrogen compounds in Europe have been reduced following a series of control measures during the last two decades. These changes have taken place during a period in which the primary gases and the wet deposition throughout Europe were extensively monitored. Since the end of the 1970s, for example land based sulphur emissions declined by between 90 and 70% depending on the region. Over the same period the total deposition of sulphur and its partitioning into wet and dry deposition have declined, but the spatial pattern in the reduction in deposition differs from that of emission and has changed with time. Such non-linearities in the emission-deposition relationship are important to understand as they complicate the process of assessing the effects of emission reduction strategies. Observed non-linearities in terrestrial sulphur emission-deposition patterns have been identified in north west Europe due to increases in marine emissions, and are currently slowing the recovery of freshwater ecosystems. Changes in the relative amounts of SO2 and NH3 in air over the last two decades have also changed the affinity of terrestrial surfaces for SO2 and have therefore changed the deposition velocity of SO2 over substantial areas. The consequence of this effect has been the very rapid reduction in ambient SO2 concentration in some of the major source areas of Europe, where NH3 did not change much. Interactions between the different pollutants, generating non-linearities are now being incorporated in long-range transport models to simulate the effects of historical emission trends and to provide projections into the future. This paper identifies non-linearities in emission deposition relationships for sulphur and nitrogen compounds in Europe using data from the EMEP long-rang transport model and measured concentration fields of the major ions in precipitation and of SO2 and NO2 in surface air.  相似文献   
767.
U.S. Department of Energy (US DOE) remediation responsibilities include the Hanford site in Washington State. Cleanup is governed by the Tri‐Party Agreement (TPA) between the US DOE as the responsible party and the U.S. Environmental Protection Agency and Washington State Department of Ecology as joint regulators. In 2003, the US DOE desired to implement a “Risk‐Based End State” (RBES) policy at Hanford, with remediation measures driven by acceptable risk standards using exposure scenarios based on the 1999 Hanford Comprehensive Land‐Use Plan. Facing resistance from regulators and stakeholders, the US DOE solicited public input on its policy. This led to a Hanford Site End State Vision in 2005 and a commitment that the TPA would continue to control remediation. This article describes how regulator and public participation modified RBES to an end‐state vision. © 2010 Wiley Periodicals, Inc.  相似文献   
768.
Bioassays can provide meaningful information about the relative toxicity of remediated soil samples, revealing the unwelcome toxic side effects produced by some cleanup projects. Section 121 of CERCLA's 1986 amendments calls for hazardous waste site remediations to permanently and significantly reduce the volume, toxicity, and mobility of hazardous substances, pollutants, and contaminants. Traditional engineering technology has focused on reducing volume and mobility, assuming that such reduction would lead to reductions in toxicity. Environmental scientists have argued, however, that such reductions are not always the result, but lack of consensus on how hazardous waste mixtures should be measured toxicologically has slowed development of integrated assessments. The aquatic and terrestrial bioassays discussed in this article are evaluated for various chemicals, mixtures of chemicals, and actual waste site chemical mixtures at a Superfund mobility reduction project in Kent, Washington. Results suggest that although remediation accomplished the primary objective of reducing mobility, it also introduced toxic effects. These tradeoffs must be viewed holistically when the ultimate performance of cleanup measures is judged.  相似文献   
769.
770.
    
Although the reaction mechanics are somewhat mysterious, the use of iron for in situ groundwater treatment has recently gained considerable attention and respect in the remediation industry. The basic scientific principles of both applications of iron have been known for over a century; however, both were nearly unheard of as remediation technologies five years ago. Both technologies have a strong potential for widespread use. They are commercially available, have been proven in field studies, are less expensive than traditional pump and treat technologies, and, in many types of groundwater systems, may be able to meet difficult-to-achieve groundwater treatment standards. As these technologies continue to undergo development, there could be considerably more aggressive applications used to treat ground-water containing high concentrations of chlorinated organics and DNAPLs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号