首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4959篇
  免费   97篇
  国内免费   76篇
安全科学   221篇
废物处理   243篇
环保管理   1285篇
综合类   446篇
基础理论   1139篇
环境理论   5篇
污染及防治   1217篇
评价与监测   342篇
社会与环境   180篇
灾害及防治   54篇
  2023年   28篇
  2022年   27篇
  2021年   51篇
  2020年   33篇
  2019年   64篇
  2018年   79篇
  2017年   94篇
  2016年   120篇
  2015年   119篇
  2014年   113篇
  2013年   555篇
  2012年   183篇
  2011年   262篇
  2010年   199篇
  2009年   202篇
  2008年   262篇
  2007年   265篇
  2006年   245篇
  2005年   171篇
  2004年   197篇
  2003年   199篇
  2002年   179篇
  2001年   84篇
  2000年   108篇
  1999年   108篇
  1998年   75篇
  1997年   67篇
  1996年   74篇
  1995年   72篇
  1994年   64篇
  1993年   70篇
  1992年   72篇
  1991年   44篇
  1990年   54篇
  1989年   45篇
  1988年   33篇
  1987年   40篇
  1986年   47篇
  1985年   43篇
  1984年   44篇
  1983年   51篇
  1982年   38篇
  1981年   54篇
  1980年   45篇
  1979年   23篇
  1978年   25篇
  1977年   17篇
  1976年   12篇
  1975年   14篇
  1971年   13篇
排序方式: 共有5132条查询结果,搜索用时 15 毫秒
961.
Studies of the effects of cross-habitat resource subsidies have been a feature of food web ecology over the past decade. To date, most studies have focused on demonstrating the magnitude of a subsidy or documenting its effect in the recipient habitat. Ecologists have yet to develop a satisfactory framework for predicting the magnitude of these effects. We used 115 data sets from 32 studies to compare consumer responses to resource subsidies across recipient habitat type, trophic level, and functional group. Changes in consumer density or biomass in response to subsidies were inconsistent across habitats, trophic, and functional groups. Responses in stream cobble bar and coastline habitats were larger than in other habitats. Contrary to expectation, the magnitude of consumer response was not affected by recipient habitat productivity or the ratio of productivity between donor and recipient habitats. However, consumer response was significantly related to the ratio of subsidy resources to equivalent resources in the recipient habitat. Broad contrasts in productivity are modified by subsidy type, vector, and the physical and biotic characteristics of both donor and recipient habitats. For this reason, the ratio of subsidy to equivalent resources is a more useful tool for predicting the possible effect of a subsidy than coarser contrasts of in situ productivity. The commonness of subsidy effects suggests that many ecosystems need to be studied as open systems.  相似文献   
962.
Hannan LB  Roth JD  Ehrhart LM  Weishampel JF 《Ecology》2007,88(4):1053-1058
Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.  相似文献   
963.
Ecological theory predicts that generalist predators should damp or suppress long-term periodic fluctuations (cycles) in their prey populations and depress their average densities. However, the magnitude of these impacts is likely to vary depending on the availability of alternative prey species and the nature of ecological mechanisms driving the prey cycles. These multispecies effects can be modeled explicitly if parameterized functions relating prey consumption to prey abundance, and realistic population dynamical models for the prey, are available. These requirements are met by the interaction between the Hen Harrier (Circus cyaneus) and three of its prey species in the United Kingdom, the Meadow Pipit (Anthus pratensis), the field vole (Microtus agrestis), and the Red Grouse (Lagopus lagopus scoticus). We used this system to investigate how the availability of alternative prey and the way in which prey dynamics are modeled might affect the behavior of simple trophic networks. We generated cycles in one of the prey species (Red Grouse) in three different ways: through (1) the interaction between grouse density and macroparasites, (2) the interaction between grouse density and male grouse aggressiveness, and (3) a generic, delayed density-dependent mechanism. Our results confirm that generalist predation can damp or suppress grouse cycles, but only when the densities of alternative prey are low. They also demonstrate that diametrically opposite indirect effects between pairs of prey species can occur together in simple systems. In this case, pipits and grouse are apparent competitors, whereas voles and grouse are apparent facilitators. Finally, we found that the quantitative impacts of the predator on prey density differed among the three models of prey dynamics, and these differences were robust to uncertainty in parameter estimation and environmental stochasticity.  相似文献   
964.
Maron J  Marler M 《Ecology》2007,88(10):2651-2661
Human modification of the environment is causing both loss of species and changes in resource availability. While studies have examined how species loss at the local level can influence invasion resistance, interactions between species loss and other components of environmental change remain poorly studied. In particular, the manner in which native diversity interacts with resource availability to influence invasion resistance is not well understood. We created experimental plant assemblages that varied in native species (1-16 species) and/or functional richness (defined by rooting morphology and phenology; one to five functional groups). We crossed these diversity treatments with resource (water) addition to determine their interactive effects on invasion resistance to spotted knapweed (Centaurea maculosa), a potent exotic invader in the intermountain West of the United States. We also determined how native diversity and resource addition influenced plant-available soil nitrogen, soil moisture, and light. Assemblages with lower species and functional diversity were more heavily invaded than assemblages with greater species and functional diversity. In uninvaded assemblages, experimental addition of water increased soil moisture and plant-available nitrogen and decreased light availability. The availability of these resources generally declined with increasing native plant diversity. Although water addition increased susceptibility to invasion, it did not fundamentally change the negative relationship between diversity and invasibility. Thus, native diversity provided strong invasion resistance even under high resource availability. These results suggest that the effects of local diversity can remain robust despite enhanced resource levels that are predicted under scenarios of global change.  相似文献   
965.
Many young birds on the Arctic tundra are confronted by a challenging task: they must molt their feathers and accumulate fat stores for the autumn migration before climatic conditions deteriorate. Our understanding of the costs and constraints associated with these stages is extremely limited. We investigated post-juvenal molt and premigratory fattening in free-ranging juvenile White-crowned Sparrows (Zonotrichia leucophrys gambelii) on the Arctic tundra. We found evidence for trade-offs between premigratory fat accumulation and molt: heavily molting birds had significantly less fat. Birds increased the rate of fat accumulation as the season progressed, but we found no evidence of a similar increase in rate of molt. Using a controlled captive study to isolate the energetic costs of body feather replacement, we found no difference in fat or size-corrected mass of birds actively growing body feathers as compared to controls. Molting birds, however, consumed 17% more food than controls, suggesting a significant cost of body feather growth. Our results provide evidence of significant costs, constraints, and trade-offs associated with post-juvenal molt and premigratory fat accumulation in young Arctic birds.  相似文献   
966.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   
967.
Kinetics of phenol and chlorophenol utilization by Acinetobacter species   总被引:9,自引:0,他引:9  
Hao OJ  Kim MH  Seagren EA  Kim H 《Chemosphere》2002,46(6):797-807
Although microbial transformations via cometabolism have been widely observed, the few available kinetic models of cometabolism have not adequately addressed the case of inhibition from both the growth and nongrowth substrates. The present study investigated the degradation kinetics of self-inhibitory growth (phenol) and nongrowth (4-chlorophenol, 4-CP) substrates, present individually and in combination. Specifically, batch experiments were performed using an Acinetobacter isolate growing on phenol alone and with 4-CP present. In addition, batch experiments were also performed to evaluate the transformation of 4-CP by resting, phenol-induced Acinetobacter cultures. The Haldane kinetic model adequately predicted the biodegradation of phenol alone, although a slight discrepancy was noted in cases of higher initial phenol concentrations. Similarly, a Haldane model for substrate utilization was also able to describe the trends in 4-CP transformation by the resting cell cultures. The 4-CP transformation by the Acinetobacter species growing on phenol was modeled using a competitive kinetic model of cometabolism, which included growth and nongrowth substrate inhibition and cross-inhibition terms. Excellent agreement was obtained between the model predictions using experimentally estimated parameter values and the experimental data for the synchronous disappearance of phenol and 4-CP.  相似文献   
968.
An investigation of a tetrachloroethene (PCE) groundwater plume originating at a dry cleaning facility on a sand aquifer and discharging to a river showed that the near-river zone strongly modified the distribution, concentration, and composition of the plume prior to discharging into the surface water. The plume, streambed concentration, and hydrogeology were extensively characterized using the Waterloo profiler, mini-profiler, conventional and driveable multilevel samplers (MLS), Ground Penetrating Radar (GPR) surveys, streambed temperature mapping (to identify discharge zones), drivepoint piezometers, and soil coring and testing. The plume observed in the shallow streambed deposits was significantly different from what would have been predicted based on the characteristics of the upgradient plume. Spatial and temporal variations in the plume entering the near-river zone contributed to the complex contaminant distribution observed in the streambed where concentrations varied by factors of 100 to 5000 over lateral distances of less than 1 to 3.5 m. Low hydraulic conductivity semi-confining deposits and geological heterogeneities at depth below the streambed controlled the pattern of groundwater discharge through the streambed and influenced where the plume discharged into the river (even causing the plume to spread out over the full width of the streambed at some locations). The most important effect of the near-river zone on the plume was the extensive anaerobic biodegradation that occurred in the top 2.5 m of the streambed, even though essentially no biodegradation of the PCE plume was observed in the upgradient aquifer. Approximately 54% of the area of the plume in the streambed consisted solely of PCE transformation products, primarily cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). High concentrations in the interstitial water of the streambed did not correspond to high groundwater-discharge zones, but instead occurred in low discharge zones and are likely sorbed or retarded remnants of past high-concentration plume discharges. The high-concentration areas (up to 5529 microg/l of total volatile organics) in the streambed are of ecological concern and represent potential adverse exposure locations for benthic and hyporheic zone aquatic life, but the effect of these exposures on the overall health of the river has yet to be determined. Even if the upgradient source of PCE is remediated and additional PCE is prevented from reaching the streambed, the high-concentration deposits in the streambed will likely take decades to hundreds of years to flush completely clean under natural conditions because these areas have low vertical groundwater flow velocities and high retardation factors. Despite high concentrations of contaminants in the streambed, PCE was detected in the surface water only rarely due to rapid dilution in the river and no cDCE or VC was detected. Neither the sampling of surface water nor the sampling of the groundwater from the aquifer immediately adjacent to the river gave an accurate indication of the high concentrations of PCE biodegradation products present in the streambed. Sampling of the interstitial water of the shallow streambed deposits is necessary to accurately characterize the nature of plumes discharging to rivers.  相似文献   
969.
Indicators of ecosystem recovery   总被引:6,自引:0,他引:6  
  相似文献   
970.
ABSTRACT: The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号