The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca2+ (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca2+ might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca2+ concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies.
Two independent field trials were performed in Guangdong and Hubei, China in 2011 to investigate the dissipation and residue levels of triforine in strawberry and soil. A fast and simple method using gas chromatography with electron capture detector was developed and validated to determine triforine levels in strawberry and soil. The average recovery of triforine in strawberry ranged from 87.46 to 104.32 % with a relative standard deviation (RSD) of 0.72 to 4.54 %; that in soil ranged from 83.82 to 103.01 % with an RSD of 3.89 to 4.36 %. The limit of quantification of the proposed method was 0.01 mg/kg for both strawberry and soil. The results suggest that the triforine dissipation curves followed the first-order kinetic. The half-lives of triforine in strawberry from Guangdong and Hubei were 3.58 and 4.42 days, respectively; those in soil were 3.53 and 4.10 days, respectively. The terminal residues of triforine in strawberry ranged from 0.032 to 0.264 mg/kg at preharvest intervals of 0.5, 1, and 3 days. These values are lower than the maximum residue limit of 1 mg/kg in strawberry set by the Codex Alimentarius Commission. 相似文献
Air pollution, including particulate matter (PM) and microorganism aerosol, is a severe problem due to its high pathogenicity. In this study, bio‐based ionic polymers derived from alginate are prepared and employed as antimicrobial filter materials. Among them, fully bio‐based cholinium alginate material exhibits the optimal antimicrobial activity and PM removal performance (99.69% for PM2.5 removal efficiency, 99.89% for PM10 removal efficiency, pressure drop below 2 Pa, and 2.8882 for quality factor (QF)). The antimicrobial activity of cholinium alginate is dramatically promoted compared with that of the raw material sodium alginate. Density function theory (DFT) studies further confirm that cholinium can electrostatically bind with anionic components on Gram‐negative bacterial cell membranes to enable sterilization. Moreover, the performance of cholinium alginate material under practical condition outperforms commercial masks. This work will provide an effective approach to develop promising green antimicrobial materials for environmental decontamination. 相似文献
The transport behaviors of a suite of contaminants released from electronic waste (e-waste) recycling operations, including polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and heavy metals, were evaluated by analyzing the contaminant residues in surface soils sampled in the surrounding area of an e-waste recycling site in South China. Concentrations of PBDEs and PCBs in the soil samples ranged from 0.565 to 2908 ng g(-1) dw and from 0.267 to 1891 ng g(-1) dw, respectively, while soil residues were 0.082-2.56, 3.22-287, and 16.3-162 μg g(-1) dw for Cd, Cu, and Pb, respectively. Concentrations of PBDEs and PCBs in soil decreased with increasing distance from the source of pollution, indicating possible PBDE and PCB contamination in the surrounding areas due to the short-range transport of these compounds from the e-waste recycling site. Although no significant difference in the short-range transport potential among PBDE and PCB congeners was observed, reductions in concentrations of the highly-brominated-BDEs and highly-chlorinated-CBs were slightly quicker than those of their less-halogen-substituted counterparts. Conversely, heavy metals showed the lowest transport potential due to their low vapor pressure, and results showed metals would remain near the pollution source instead of diffusing into the surrounding areas. Finally, mass inventories in areas near the e-waste site were 0.920, 0.134, 0.860, 4.68, 757, and 673 tons for BDE209, PBDEs (excluding BDE209), PCBs, Cd, Cu, and Pb, respectively. 相似文献