首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   7篇
  国内免费   2篇
安全科学   21篇
废物处理   6篇
环保管理   52篇
综合类   68篇
基础理论   35篇
污染及防治   110篇
评价与监测   18篇
社会与环境   10篇
灾害及防治   9篇
  2023年   3篇
  2022年   8篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   13篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   39篇
  2012年   11篇
  2011年   18篇
  2010年   10篇
  2009年   5篇
  2008年   21篇
  2007年   17篇
  2006年   17篇
  2005年   21篇
  2004年   14篇
  2003年   13篇
  2002年   14篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1982年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1969年   1篇
  1964年   5篇
  1963年   1篇
  1962年   2篇
  1961年   2篇
  1960年   1篇
排序方式: 共有329条查询结果,搜索用时 15 毫秒
251.
The rise of the air temperature is assured to be part of the global climatic change, but there is still a lack of knowledge about its effects at a regional scale. The article tackles the correlation of air temperature with the phenology of selected plants by the example of Baden-Württemberg to provide a spatial valid data base for regional climate change models. To this end, the data on air temperature and plant phenology, gathered from measurement sites without congruent coverage, were correlated after performing geostatistical analysis and estimation. In addition, geostatistics are used to analyze and cartographically depict the spatial structure of the phenology of plants in spring and in summer. The statistical analysis reveals a significant relationship between the rising air temperature and the earlier beginning of phenological phases like blooming or fruit maturation: From 1991 to 1999 spring time, as indicated by plant phenology, has begun up to 15 days earlier than from 1961 to 1990. As shown by geostatistics, this holds true for the whole territory of Baden-Württemberg. The effects of the rise of air temperature should be investigated not only by monitoring biological individuals, as for example plants, but on an ecosystem level as well. In Germany, the environmental monitoring should be supplemented by the study of the effects of the climatic change in ecosystems. Because air temperature and humidity have a great influence on the temporal and spatial distribution of pathogen carriers (vectors) and pathogens, mapping of the environmental determinants of vector and pathogen distribution in space and time should be performed in order to identify hot spots for risk assessment and further detailed epidemiological studies.  相似文献   
252.
Thermochemical biomass gasification, followed by conversion of the produced syngas to fuels and electrical power, is a promising energy alternative. Real-world characterization of particulate matter (PM) and other contaminants in the syngas is important to minimize damage and ensure efficient operation of the engines it powers and the fuels created from it. A dilution sampling system is demonstrated to quantify PM in syngas generated from two gasification plants utilizing different biomass feedstocks: a BioMax?15 Biopower System that uses raw and torrefied woodchips as feedstocks, and an integrated biorefinery (IBR) that uses rice hulls and woodchips as feedstocks. PM2.5 mass concentrations in syngas from the IBR downstream of the purification system were 12.8–13.7 μg·m-3, which were significantly lower than the maximum level for catalyst protection (500 μg·m-3) and were 2–3 orders of magnitude lower than those in BioMax?15 syngas (2247–4835 μg·m-3). Ultrafine particle number concentration and PM2.5 chemical constituents were also much lower in the IBR syngas than in the BioMax?15. The dilution sampling system enabled reliable measurements over a wide range of concentrations: the use of high sensitivity instruments allowed measurement at very low concentrations (~1 μg·m-3), while the flexibility of dilution minimized sampling problems that are commonly encountered due to high levels of tars in raw syngas (~1 g·m-3).  相似文献   
253.
Much is still to be learned about the spatial ecology of foraging marine turtles, especially for juveniles and adult males which have received comparatively little attention. Additionally, there is a paucity of ecological information on growth rates, size and age at maturity, and sex ratios at different life stages; data vital for successful population modelling. Here, we present results of a long-term (2002–2011) study on the movements, residency, growth and sex ratio of loggerhead turtles (Caretta caretta) in Amvrakikos Gulf (39°0′N 21°0′E), Greece, using satellite telemetry (N = 8) and ongoing capture–mark–recapture (CMR; N = 300 individuals). Individuals encountered at sea ranged from large juvenile to adult (46.2–91.5 cm straight carapace length) and demonstrated growth rates within published norms (<2.7 cm yr?1) that slowed with increasing body size. We revealed that an unexpectedly high proportion of animals were male (>44 % of captures above 65 cm straight carapace length), compared to region-wide female-biased hatchling production, indicating sex-biased survival or possible behavioural drivers for likelihood of capture in the region. Satellite tracking confirmed that some turtles establish discrete, protracted periods of residency spanning more than 1 year, whilst others migrated away from the site. These findings are underlined by CMR results with individual capture histories spanning up to 7 years, and only 18 % of individuals being recaptured.  相似文献   
254.
255.
In 2010, a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and wastewater infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholerae resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti’s drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low-cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65 % and a specificity of 93 %. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88 %, even with fecal coliform concentrations greater than 100 colony-forming units per 100 ml. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low-resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources.  相似文献   
256.
A study using two stack-sampling methodologies for collecting particulate matter (PM) emissions was conducted using a hot filter followed by a cold impinger sampling train and a dilution sampler. Samples were collected from ferrous iron metal casting processes that included pouring molten iron into a sand mold containing an organic binder, metal cooling, removal of the sand from the cooled casting (shakeout), and postshakeout cooling. The shakeout process contributed more to PM emissions than the metal pouring and cooling processes. Particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass emissions for the entire casting cycle ranged from 3.4 to 4.7 lb/t of metal for the hot filter/impinger method and from 0.8 to 1.8 lb/t of metal for the dilution method. Most of the difference was due to PM captured by the impingers, much of which was probably dissolved gases rather than condensable vapors. Of the PM fraction captured by the impingers, 96-98% was organic in nature. The impinger PM fraction contributed 32-38% to the total suspended particle mass and caused a factor of 2-4 positive bias for PM2.5 emissions. For the pouring and cooling processes only, the factor increased to over seven times.  相似文献   
257.
Abstract: Landscape water conservation is an important issue for municipalities throughout the Western United States, and especially in Utah as rapid growth strains existing water supplies. We conducted interdisciplinary research in Layton, Utah, that aimed at understanding patterns of landscape water use among households and businesses. The research project involved three basic tasks. First, a landscape “water budget” was developed by producing a calibrated and classified mosaic of landscape type and area from airborne multispectral digital imagery, integrating this information with Layton City parcel boundary data to determine landscape vegetated areas per lot, and estimating irrigation needs derived from reference evapotranspiration (ETo) obtained using weather data for the Salt Lake City metropolitan region. Second, utilizing Layton water billing data, water use for each household and business was identified and categorized as “conserving,”“acceptable” or “wasteful” by determining how much the water applied varied from actual landscape plant need. Third, surveys were administered to a random stratified sample of households and businesses in the study area to investigate various factors that were hypothesized to be predictive of wasteful watering practices. This paper primarily focuses on analysis of the household and business survey data, which explores factors affecting urban landscape water use from a human behavioral perspective. We found that the most significant factors predicting actual water use were the type of irrigation system and whether the location was a household or business. Attitudinal and motivational characteristics were not consistently associated with water use. We found that wasteful watering is the result of many factors embedded in the complex context of urban landscapes. This implies that water conservation programs should identify potential wasteful users through analyses of water billing data and direct water conservation measures at these users by focusing on site‐specific evaluations and recommendations. Water audits or water checks are one such tool that some communities have employed to help people understand and assess the quantity of water needed by and applied to their landscapes. This approach provides an opportunity to evaluate situational constraints at particular locations and design appropriate strategies for reducing water waste.  相似文献   
258.
This article reports a study of the public perception of large wood in rivers and streams in the United States. Large wood is an element of freshwater aquatic ecosystems that has attracted much scientific interest in recent years because of its value in biological and geomorphological processes. At the heart of the issue is the nature of the relationship between scientific recognition of the ecological and geomorphological benefits of wood in rivers, management practices utilizing wood for river remediation progress, and public perceptions of in-channel wood. Surveys of students’ perceptions of riverscapes with and without large wood in the states of Colorado, Connecticut, Georgia, Illinois, Iowa, Missouri, Oregon, and Texas suggest that many individuals in the United States adhere to traditionally negative views of wood. Except for students in Oregon, most respondents considered photographs of riverscapes with wood to be less aesthetically pleasing and needing more improvement than rivers without wood. Analysis of reasons given for improvement needs suggest that Oregon students are concerned with improving channels without wood for fauna habitat, whereas respondents elsewhere focused on the need for cleaning wood-rich channels for flood risk management. These results underscore the importance of public education to increase awareness of the geomorphological and ecological significance of wood in stream systems. This awareness should foster more positive attitudes toward wood. An integrated program of research, education, and policy is advocated to bridge the gap between scientific knowledge and public perception for effective management and restoration of river systems with wood.  相似文献   
259.
We used the biomonitor, Corbicula fluminea, to investigate the contributions of trace elements associated with different point sources and land uses in a large river. Trace elements were analyzed in tissues of clams collected from 15 tributary streams draining five land use or point source types: agriculture, forest, urban, coal-fired power plant (CFPP), and wastewater (WWTP). Clams from forested catchments had elevated Hg concentrations, and concentrations of arsenic and selenium were highest (5.0+/-0.2 and 13.6+/-0.9 microg g(-1) dry mass (DM), respectively) in clams from CFPP sites. Cadmium concentrations were significantly higher in clams from urban and CFPP sites (4.1+/-0.2 and 3.6+/-0.9 microg g(-1) DM, respectively). Non-metric multidimensional scaling (NMS) of tissue concentrations in clams clustered at CFPP and forest/agriculture sites at opposite ends of the ordination space, and the distribution of sites was driven by Cu, Zn, Cd, and Hg.  相似文献   
260.
Land application systems, also referred to as beneficial reuse systems, are engineered systems that have defined and permitted application areas based on site and waste characteristics to determine the land area size requirement. These terrestrial systems have orders of magnitude greater microbial capability and residence time to achieve decomposition and assimilation compared with aquatic systems. In this paper we focus on current information and information needs related to terrestrial fate pathways in land treatment systems. Attention is given to conventional organic chemicals as well as new estrogenic and pharmaceutical chemicals of commerce. Specific terrestrial fate pathways addressed include: decomposition, bound residue formation, leaching, runoff, and crop uptake. Molecular decomposition and formation of bound residues provide the basis for the design and regulation of land treatment systems. These mechanisms allow for assimilation of wastes and nondegradation of the environment and accomplish the goal of sustainable land use. Bound residues that are biologically produced are relatively immobile, degrade at rates similar to natural soil materials, and should present a significantly reduced risk to the environment as opposed to parent contaminants. With regard to leaching and runoff pathways, no comprehensive summary or mathematical model of organic chemical migration from land treatment systems has been developed. For the crop uptake pathway, a critical need exists to develop information for nonagricultural chemicals and to address full-scale performance and monitoring at more land application sites. The limited technology choices for treatment of biosolids, liquids, and other wastes implies that acceptance of some risks and occurrence of some benefits will continue to characterize land application practices that contribute directly to the goal of beneficial reuse and sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号