首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19293篇
  免费   100篇
  国内免费   155篇
安全科学   346篇
废物处理   830篇
环保管理   2255篇
综合类   3698篇
基础理论   5175篇
环境理论   6篇
污染及防治   4130篇
评价与监测   1457篇
社会与环境   1581篇
灾害及防治   70篇
  2022年   126篇
  2021年   106篇
  2019年   100篇
  2018年   714篇
  2017年   695篇
  2016年   716篇
  2015年   271篇
  2014年   401篇
  2013年   1021篇
  2012年   636篇
  2011年   1279篇
  2010年   861篇
  2009年   967篇
  2008年   1138篇
  2007年   1386篇
  2006年   536篇
  2005年   576篇
  2004年   479篇
  2003年   549篇
  2002年   554篇
  2001年   608篇
  2000年   383篇
  1999年   264篇
  1998年   166篇
  1997年   164篇
  1996年   171篇
  1995年   188篇
  1994年   179篇
  1993年   131篇
  1992年   164篇
  1991年   172篇
  1990年   168篇
  1989年   141篇
  1988年   156篇
  1987年   96篇
  1986年   128篇
  1985年   127篇
  1984年   132篇
  1983年   117篇
  1982年   120篇
  1981年   120篇
  1980年   87篇
  1979年   99篇
  1978年   101篇
  1976年   92篇
  1974年   104篇
  1972年   87篇
  1971年   85篇
  1967年   100篇
  1964年   92篇
排序方式: 共有10000条查询结果,搜索用时 61 毫秒
941.
Environmental Chemistry Letters - Humic acids are complex mixtures of organic molecules of different sizes, molecular weights and functional groups such as phenols, carboxyls, quinones and amino...  相似文献   
942.
943.
Link Emissions Models estimate traffic-related air pollution emissions at the individual road link level and inform governmental policies for air quality management. The current South Australian Link Emissions Model (CLEM) assumes constant spatiotemporal traffic flow at a single fixed mean speed, a potential limitation as the variability of exhaust emissions with vehicle speed has been established in the literature.We extend CLEM to eliminate the assumption of constant traffic flow, through the derivation of mean Australian vehicle speed distributions for different road types. Specifically, we successfully model the vehicle speed profile data from the second National In-Service Emissions study using Nearest Neighbour Kernel Density Estimation. We propose a mean speed Distribution Link Emissions Model (DLEM) for exhaust emission estimation based on the derived mean speed distributions. DLEM is an augmented, enhanced version of CLEM, accommodating a range of vehicle speeds and road types. The performance of the extended model, DLEM, is analysed in comparison to the current model, CLEM, through a case study analysis of vehicle exhaust emissions on a typical arterial road in Adelaide, South Australia. Results indicate use of DLEM and, by extension, mean vehicle speed distributions, has a strong impact on emission estimation. In particular, the fixed speed model, CLEM, may be substantially underestimating exhaust emissions of carbon monoxide, non-methane volatile organic compounds and particulate matter less than 2.5 μm in diameter. These are common exhaust pollutants that have been extensively linked with adverse health effects including respiratory morbidity and premature mortality.  相似文献   
944.
Tailpipe emissions in the road transportation system are a major source of air pollution and greenhouse gases. One of the possible approaches is to influence drivers’ routing decisions such that the emissions and fuel consumption is minimized. In order to evaluate such condition, we develop environmental traffic assignment (E-TA) models based on user equilibrium (UE) and system optimal (SO) behavioral principles. Extending the traditional travel time-based UE and SO principles to E-TA is not straightforward because, unlike travel time, the rate of emissions increases with the increase in vehicle speed beyond a certain point. The results of various TA models show a network-wide traffic control strategy in which vehicles are routed according to SO-based E-TA, can reduce system-wide emissions. However, a system in which drivers make routing decisions to minimize their own emissions (E-UE system) results in a paradoxical situation of increased individual as well as system-wide emissions.  相似文献   
945.
Industrially utilized river basins are frequently exposed to contaminants originating from polluting activities. However, the physical instability and probability of mass movement mobilization of contaminated soil into rivers have only received little attention. In this study, we present a GIS-based method to produce a regional overview of where and how contaminated areas are potentially exposed to slope instability. A landslide susceptibility-index was used to study the degree and distribution of overlap between contaminated sites and unstable ground. A contaminated area instability hazard classification was produced integrating slope instability and contamination risk classification. Our results indicate that mass movement can be tied mainly to a slope gradient ≥16°, a proximity to the river that is <500 m, a distance of <500 m from roads, concave surface curvature, and sand- and silt soils. Forty-six (22%) of all considered contaminated sites are located within areas with a non-negligible slope instability, of which a majority, 30 sites (14%) are situated on ground with a low or moderate instability. Three sites with a class 2 contamination risk (the 2nd highest class) are located on ground with a very high slope instability.  相似文献   
946.
Wybong Creek discharges salts into the agriculturally and industrially important Hunter River in New South Wales, Australia. Abrupt increases in salinity occur periodically in the mid-Wybong Creek catchment. In order to understand the processes which cause these abrupt increases, changes in surface and groundwater were investigated. It is shown that salinity increases can be attributed to highly discrete groundwater discharge directly into the river from below. Hourly electrical conductivity data measured in the river showed regular, diurnal electrical conductivity fluctuations of up to 350 μS cm?1. These fluctuations could not be attributed to barometric pressure, temperature, or evapotranspiration. Instead, a similar periodicity in surface water electrical conductivity and groundwater height in nearby groundwater wells was found. Fluctuations were of similar periodicity to the orthotides which cause fluctuations in surface water height and are induced by Earth tides. The geology in the mid-catchment area indicates conditions are optimal for Earth tides to impact groundwater. The reporting of orthotidal changes in water chemistry in this article is believed to be the first of its kind in the scientific literature, with the large fluctuations noted having important implications for water monitoring and management in the catchment. Further research investigating Earth-tide-induced phases of groundwater heights will better constrain the relationships between surface water chemistry and groundwater height.  相似文献   
947.
This study investigates land cover change near the abandoned Pine Point Mine in Canada’s Northwest Territories. Industrial mineral development transforms local environments, and the effects of such disturbances are often long-lasting, particularly in subarctic, boreal environments where vegetation conversion can take decades. Located in the Boreal Plains Ecozone, the Pine Point Mine was an extensive open pit operation that underwent little reclamation when it shut down in 1988. We apply remote sensing and landscape ecology methods to quantify land cover change in the 20 years following the mine’s closure. Using a time series of near-anniversary Landsat images, we performed a supervised classification to differentiate seven land cover classes. We used raster algebra and landscape metrics to track changes in land cover composition and configuration in the 20 years since the mine shut down. We compared our results with a site in Wood Buffalo National Park that was never subjected to extensive anthropogenic disturbance. This space-for-time substitution provided an analog for how the ecosystem in the Pine Point region might have developed in the absence of industrial mineral development. We found that the dense conifer class was dominant in the park and exhibited larger and more contiguous patches than at the mine site. Bare land at the mine site showed little conversion through time. While the combination of raster algebra and landscape metrics allowed us to track broad changes in land cover composition and configuration, improved access to affordable, high-resolution imagery is necessary to effectively monitor land cover dynamics at abandoned mines.  相似文献   
948.
The growing population number and traffic loads, increasing environmental pressures, agricultural intensification, and the establishment of Mount Cameroon National Park demand farsighted environmental management in the region and the definition of a favorable ecological status. Since plants grow in the interface between soils and the atmosphere they can be used as passive biomonitors for the environmental quality. At the same time, the accumulation of nutrients and pollutants in crops is linked to human health, so that foliar elemental levels can be used as an integrative measure for environmental pollution and impact assessment. In the present study, we collected leaf samples of plantain, cassava, cocoyam, and maize on 28 sites at the southern flanks of Mt. Cameroon and determined 20 chemical elements. Air pollution in the study area comes from biomass and waste burning mainly, but emissions from traffic and a large refinery were believed to also play a significant role. However, spatial patterns in foliar elemental concentrations reflected the geochemistry rather than specific sources of pollution. Significant differences in foliar metal and nutrient levels were observed between the four species, indicating a different demand and uptake of specific elements. The results were compared to published data on nutrient concentrations in the tested species and the so-called reference plant. The data can be used as a baseline for future studies in plant nutrition and the environmental monitoring in inner tropical regions where these crops are grown.  相似文献   
949.
Human population growth in coastal areas continues to threaten estuarine ecosystems and resources. Populations of Crassostrea virginica have declined across the USA due to water quality degradation, disease pressure, alteration of habitat, and other changes related to anthropogenic impacts. Metals that may be present in estuarine habitats can bioaccumulate in oysters, with potential consequences to the health of oysters and humans consumers. This study (1) evaluated the occurrence and relationships of metal concentrations in oyster tissue versus estuarine sediments, (2) examined oyster tissue concentrations in relation to state water quality designations, and (3) evaluated the potential risk for humans from oyster consumption related to metal concentrations from harvestable waters. Results indicated metal concentrations in sediments and oysters along coastal South Carolina remain low compared to other areas and that concentrations in oyster tissue and adjacent sediments were not highly correlated with each other. However, high concentrations of some metals occurred in oysters sampled from areas designated as Approved for Harvesting. This is important because most harvest area designation systems rely on regular bacterial monitoring when evaluating the safety of consumption. Others safety measurements may be necessary as part of routine monitoring.  相似文献   
950.
Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号