首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   0篇
  国内免费   35篇
安全科学   55篇
废物处理   46篇
环保管理   54篇
综合类   62篇
基础理论   85篇
环境理论   1篇
污染及防治   296篇
评价与监测   89篇
社会与环境   35篇
灾害及防治   4篇
  2023年   22篇
  2022年   78篇
  2021年   72篇
  2020年   15篇
  2019年   25篇
  2018年   16篇
  2017年   31篇
  2016年   25篇
  2015年   12篇
  2014年   18篇
  2013年   67篇
  2012年   33篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   20篇
  2007年   28篇
  2006年   13篇
  2005年   12篇
  2004年   10篇
  2003年   15篇
  2002年   16篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
141.
Environmental Science and Pollution Research - Good governance and natural resource rent are important pillars of sustainable development. The paper explores the role of governance and natural...  相似文献   
142.
Environmental Science and Pollution Research - Developing countries have depleted their natural resources in economic interest to achieve high economic growth. Current urbanization patterns and...  相似文献   
143.
Pollution of the biosphere by the toxic metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The primary source of this pollution includes the industrial operations such as mining, smelting, metal forging, combustion of fossil fuels and sewage sludge application in agronomic practices. The metals released from these sources accumulate in soil and in turn, adversely affect the microbial population density and physico-chemical properties of soils, leading to the loss of soil fertility and yield of crops. The heavy metals in general cannot be biologically degraded to more or less toxic products and hence, persist in the environment. Conventional methods used for metal detoxification produce large quantities of toxic products and are cost-effective. The advent of bioremediation technology has provided an alternative to conventional methods for remediating the metal-poisoned soils. In metal-contaminated soils, the natural role of metal-tolerant plant growth promoting rhizobacteria in maintaining soil fertility is more important than in conventional agriculture, where greater use of agrochemicals minimize their significance. Besides their role in metal detoxification/removal, rhizobacteria also promote the growth of plants by other mechanisms such as production of growth promoting substances and siderophores. Phytoremediation is another emerging low-cost in situ technology employed to remove pollutants from the contaminated soils. The efficiency of phytoremediation can be enhanced by the judicious and careful application of appropriate heavy-metal tolerant, plant growth promoting rhizobacteria including symbiotic nitrogen-fixing organisms. This review presents the results of studies on the recent developments in the utilization of plant growth promoting rhizobacteria for direct application in soils contaminated with heavy metals under a wide range of agro-ecological conditions with a view to restore contaminated soils and consequently, promote crop productivity in metal-polluted soils across the globe and their significance in phytoremediation.  相似文献   
144.
Jute yarns were grafted with a single impregnating monomer 1,6-hexanediol diacrylate (HDDA) in order to improve the physicomechanical properties. Jute yarns soaked for different soaking times (3, 5, 10, and 30 minutes) in HDDA+MeOH solutions at different proportions (1–10% HDDA in MeOH [v/v] along with photoinitiator Darocur-1664 [3%]) were cured under UV lamp at different UV radiation intensities (two, four, six, and eight passes). Concentration of monomer, soaking time, and intensity of UV radiation were optimized with extent of mechanical properties such as tensile strength, elongation at break, and modulus. Enhanced tensile strength (67%), modulus (108%), and polymer loading (11%) were achieved with 5% HDDA concentration, 5-minute soaking time, fourth pass of UV radiation. To further improve the mechanical properties, the jute yarns were pretreated with UV radiation (5, 10, 15, 30, and 50 passes) and treated with optimized monomer concentration (5%). UV-pretreated samples showed the enhanced properties. The tensile strength and modulus increase up to 84% and 132%, respectively, than that of virgin jute yarn. An experiment involving water absorption capacity shows that water uptake by treated samples was much lower than that of the untreated samples. During the weathering test, treated yarns exhibited less loss of mechanical properties than untreated yarns.  相似文献   
145.
The widespread contamination of surface and ground water quality from the heavy use of fertilizer in modern agriculture is the current concern. Therefore, this study was carried out to develop a slow-release fertilizer using charcoal. The morphology of the charcoal impregnated fertilizer was investigated by scanning electron microscopy (SEM). This study also evaluated the release patterns of N, P, and K from impregnated charcoal using a simulated soil solution and distilled water as leaching solutions. The patterns of N, P, and K releases were examined in both static and continuous-flow conditions for 360 h. Releases of N, P, and K from impregnated charcoal were found to be slow and steady. However, the release trends of N, P, and K were higher in soil solution than distilled water under both the above conditions. Dissolution occurred when N, P, and K were released in the above leached solutions. As a result, the fertilizer impregnated charcoal could be developed as slow-release type fertilizer to minimize the contamination.  相似文献   
146.
Hammad Khan M  Jung JY 《Chemosphere》2008,72(4):690-696
Di-(2-ethyl hexyl) phthalate (DEHP), a recalcitrant and an endocrine disrupting chemical, was studied for its removal from wastewater by advanced oxidation process. The effects of pH, transition metal ions, and granular activated carbon (GAC) were investigated. Removal of DEHP increased with increase in pH and among metal ions Cr(III) was found to be the most active catalyst to remove DEHP. In the case of GAC, original carbon (G0) and GAC pre-ozonated in gas phase for 10 min (G10) were tested as catalysts in catalytic ozonation and found G0 to be more active than G10. This is because, during pre-ozonation, basic groups like chromene, pyrones and also graphene layers were oxidized to acidic surface oxygen groups. These basic surface groups are reported to be active catalytic centres for ozone decomposition into .OH which is a strong oxidant. According to kinetic manipulations, DEHP degradation rate constant due to .OH was affected by the catalyst while that due to direct ozonation is same in all cases with or without catalyst. G0 was doped with chromia gels (G0/CrA) to combine the benefits of homogeneous and heterogeneous catalysis. G0/CrA showed lower catalytic efficiency than that of only G0. This might be because of changes in surface structure of GAC caused by doping of chromia gel and changes in chemical nature of Cr(III) during formation of gel. A good correlation was found between the rate constants of ozone decay and DEHP degradation (R2=0.96). This correlation confirms that ozone decomposition into .OH is a critical factor for the activity of a catalyst during ozonation.  相似文献   
147.
Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P相似文献   
148.
Using the closed-can technique, radon exhalation rate measurements have been carried out for shale and coal samples collected from various mines located in the Chakwal and Makarwal areas of Pakistan. For the two areas, the measured average values of the exhalation rates from shale are 1.45±0.13 and 0.67±0.25 Bq m−2 h−1 and for coal are 1.0±0.03 and 0.65±0.32 Bq m−2 h−1, respectively. These values are much lower than the measured exhalation rates from alum-shale-based Nordic concrete which has values in the 50–200 Bq m−2 h−1 range. The lower values of the measured exhalation rates from the shale and coal deposits in the Chakwal and Makarwal areas are indicative of their lower uranium contents and mine workers in these areas do not face any abnormal health hazard due to radon since the exhalation rates have been found to be on the low side.  相似文献   
149.
The present study examines whether patient-perpetrated violence triggers anger, hatred and other negative emotions that, under certain circumstances, might motivate nurses to behave violently with patients. In doing so, this study considers burnout as a mediator in the patient violence–nurse violence relationship. To test the causal paths, data were collected from 182 nurses working in two government-sector teaching hospitals of Pakistan's Punjab province. Results confirm that patient violence toward nurses leads to nurse violence toward patients through the mediating effect of burnout. The study advises hospitals to provide wellness and stress management programs to nurses who regularly experience events involving patient violence. Hospitals may consider allowing nurses to take short breaks after an encounter with violently behaving patients. In addition, hospitals should conduct empathy-promoting training, emotional intelligence training and ‘lens of the patient’ training programs to sensitize their nursing staff.  相似文献   
150.
Environmental Science and Pollution Research - This study was designed to investigate the impact of meteorological indicators (temperature, rainfall, and humidity) on total COVID-19 cases in...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号