首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  国内免费   2篇
安全科学   2篇
废物处理   8篇
环保管理   6篇
综合类   2篇
基础理论   1篇
污染及防治   16篇
评价与监测   4篇
社会与环境   3篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1995年   1篇
  1983年   1篇
  1980年   2篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
41.
Speciated samples of PM2.5 were collected at the Big Bend site from July of 2003 to June 2006 and the McDonald Observatory site from July of 2003 to August of 2005 in southwestern Texas, respectively, by the US Environmental Protection Agency. A total of 175 samples for the Big Bend site and 105 samples for the McDonald Observatory site with 52 species were measured; however, 30 and 32 species from the Big Bend and McDonald Observatory sites, respectively, were excluded because of too much below-detection-limit data. Due to the laboratory change about November 1 of 2004 and possible analytical artifacts, phosphorous was excluded as well. Among the species excluded, 31 species are common to both sites. The two data sets were analyzed by positive matrix factorization to infer the sources of PM observed at the two sites. The analysis resolved five source-related factors for Big Bend and four for McDonald Observatory. Sulfate-rich secondary aerosol, coal burning, motor vehicle/road dust, and a mixed factor were identified as common sources to both sites. The other factor identified for Big Bend is related to soil. Sulfate mainly exists as ammonium salts. The sulfate-rich secondary aerosols account for about 62% and 66% of the PM2.5 mass concentration at the two sites, respectively. The highest concentration of Si associated with Ca, Fe, \textSO42 - {\text{SO}}_4^{2 - } , and organic carbon at the two sites was possibly attributed to the coal-fired power plants in the region. Basically, the factor of sulfate and coal burning at the two sites showed similar chemical composition profiles and seasonal variation that reflect the regional characteristics of these sources. The regional factors of sulfate, coal burning, and soil showed predominantly low-frequency variations; however, the area-related and/or local factors showed both high and low frequency variations. The motor vehicle/road dust and the mixed factors were likely to be area-related and/or local source.  相似文献   
42.
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号