首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   3篇
  国内免费   6篇
安全科学   17篇
废物处理   14篇
环保管理   42篇
综合类   61篇
基础理论   80篇
污染及防治   111篇
评价与监测   25篇
社会与环境   18篇
灾害及防治   1篇
  2023年   2篇
  2022年   3篇
  2021年   11篇
  2020年   11篇
  2019年   4篇
  2018年   13篇
  2017年   23篇
  2016年   10篇
  2015年   12篇
  2014年   11篇
  2013年   21篇
  2012年   20篇
  2011年   32篇
  2010年   18篇
  2009年   17篇
  2008年   19篇
  2007年   26篇
  2006年   10篇
  2005年   20篇
  2004年   10篇
  2003年   10篇
  2002年   7篇
  2001年   9篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   5篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1964年   1篇
  1960年   1篇
  1938年   1篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
131.
High-voltage (hV) transmission grids are projects of societal importance that potentially have controversial social and environmental impacts. Former research shows that public opposition is sparked by the perception of negative local impacts and unjust concessionary processes. In this paper, we complement these perspectives by assessing the institutional practices of the regulatory agencies in dealing with scientific uncertainties. The regulatory agencies’ ‘ways of doing things’ are often designed to serve policy and management needs. A critical point is that the demarcation between scientifically based facts, values and assessments is often blurred in the decision-making process. This paper draws on two Norwegian case studies to investigate how the regulatory agencies dealt with (1) electromagnetic fields and health risks and (2) overhead lines versus sea cables. We argue that ambiguities and uncertainties that arise in the hV transmission line processes create ‘trolls’, and we explore how the local inhabitants and affected stakeholders in the two cases responded to these and how it triggered further opposition. By investigating how and why trolls appear and are handled, we conclude by discussing how public opposition related to hV transmission grids may be reduced – and how some ‘trolls’ may crack.  相似文献   
132.
Among the emerging literature addressing the biological effects of nanoparticles, very little information exists, particularly on aquatic organisms, that evaluates nanoparticles in comparison to non-nanocounterparts. Therefore, the potential effects of nano-scale and non-nano-scale TiO2 and ZnO on the water flea, Daphnia magna, were examined in 48-h acute toxicity tests using three different test media, several pigment formulations – including coated nanoparticles – and a variety of preparation steps. In addition, a 21-d chronic Daphnia reproduction study was performed using coated TiO2 nanoparticles. Analytical ultracentrifugation analyses provided evidence that the nanoparticles were present in a wide range of differently sized aggregates in the tested dispersions. While no pronounced effects on D. magna were observed for nano-scale and non-nano-scale TiO2 pigments in 19 of 25 acute (48-h) toxicity tests (EC50 > 100 mg L−1), six acute tests with both nano- and non-nano-scale TiO2 pigments showed slight effects (EC10, 0.5–91.2 mg L−1). For the nano-scale and non-nano-scale ZnO pigments, the acute 48-h EC50 values were close to the 1 mg L−1 level, which is within the reported range of zinc toxicity to Daphnia. In general, the toxicity in the acute tests was independent of particle size (non-nano-scale or nano-scale), coating of particles, aggregation of particles, the type of medium or the applied pre-treatment of the test dispersions. The chronic Daphnia test with coated TiO2 nanoparticles demonstrated that reproduction was a more sensitive endpoint than adult mortality. After 21 d, the NOEC for adult mortality was 30 mg L−1 and the NOEC for offspring production was 3 mg L−1. The 21-d EC10 and EC50 values for reproductive effects were 5 and 26.6 mg L−1, respectively. This study demonstrates the utility of evaluating nanoparticle effects relative to non-nano-scale counterparts and presents the first report of chronic exposure to TiO2 nanoparticles in D. magna.  相似文献   
133.

Background, aim, and scope

Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated.

Approach

We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries.
  • Have climate change and land-use change increased erosion and sediment loads in rivers?
  • Do we have indications of an increase in riverbed clogging?
  • Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging?
  • Results

    Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish.

    Discussion

    Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades.

    Conclusions

    Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor.

    Recommendations and perspectives

    Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.  相似文献   
    134.
    Background, aim, and scope  The primary aim of this study was to explore the variations in PCDD/F levels and homologue profiles of Baltic surface sediments by comprehensively analyzing polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in samples from a large number of sites, encompassing not only previously known hotspot areas, but also sites near other potential PCDD/F sources, in pristine reference areas (in which there was no industrial activity) and offshore sites. Materials and methods  Surface sediment samples (146 in total) were collected at various points along the Swedish coast and offshore areas. In addition, bulk deposition was sampled, monthly, at a single site in northern Sweden during 1 year. The concentrations of tetra- through octa-substituted CDD/Fs were determined in both matrices. Results  Highly elevated concentrations of PCDD/Fs were found at many sites in coastal areas and concentrations were also slightly elevated in some offshore areas. Homologue profiles varied substantially amongst samples from coastal sites, while those from offshore and other pristine sediments were relatively similar. The offshore sediments showed different profiles from those observed in the deposition samples. Sediment levels of PCDD/Fs were not generally significantly correlated to organic carbon levels, except in some pristine areas. Comparison of data obtained in this and previous studies suggest that both their levels and profiles are similar today to those observed 20 years ago in coastal and offshore areas. The only detected trend is that their levels appear to have decreased slightly in the offshore area of the Bothnian Sea. Discussion  The localization of hotspot areas along the coast, the lack of consensus between PCDD/F profiles of sediments and general background, and their weak correlations with organic carbon suggest that PCDD/Fs in the study area largely originate from local/regional emissions. However, due to complicating factors such as sediment dynamics and land upheaval, it is not possible to conclude whether these pollutants derive from recent emissions or from a combination of recent emissions and re-distribution of previous inputs. Conclusions  The results show that: elevated levels of PCDD/Fs are present in both coastal and offshore areas of the Baltic Sea, the major hotspots are close to the shore, and there are large variations in profiles, indicating that local emissions are (or have been) the major causes of pollution. Recommendations and perspectives  In order to identify other hotspot areas and trace sources, comprehensive analysis of PCDD/Fs in surface sediments is needed in all areas of the Baltic Sea that have not been previously investigated. The high levels of PCDD/Fs observed in surface sediments also indicate a need to elucidate whether they are due mainly to current emissions or a combination of recent pollution and re-distribution of historically deposited pollutants. To do so, better understanding of sediment dynamics and present-day inputs, such as riverine inputs, industrial effluents, and leakage from contaminated soil is required. There are indications that contaminated sediments have a regional impact on fish contamination levels. However, as yet there is no statistically robust evidence linking contaminated sediments with elevated levels in Baltic biota. It should also be noted that the Baltic Sea is being massively invaded by the deep-burrowing polychaete Marenzielleria ssp., whose presence in sediments has been shown to increase water concentrations of hydrophobic pollutants. In awareness of this, it is clear that high levels in sediments cannot be ignored in risk assessments. In order to investigate the emission trends more thoroughly, analysis of PCDD/Fs in offshore sediment cores throughout the Baltic Sea is also recommended. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
    135.
    Substantial emission of ammonia (NH3) from animal houses and the related high local deposition of NH3-N are a threat to semi-natural nitrogen-deficient ecosystems situated near the NH3 source. In Denmark, there are regulations limiting the level of NH3 emission from livestock houses near N-deficient ecosystems that are likely to change due to nitrogen (N) enrichment caused by NH3 deposition. The models used for assessing NH3 emission from livestock production, therefore, need to be precise, as the regulation will affect both the nature of the ecosystem and the economy of the farmer. Therefore a study was carried out with the objective of validating the Danish model used to monitor NH3 transport, dispersion and deposition from and in the neighbourhood of a chicken farm. In the study we measured NH3 emission with standard flux measuring methods, NH3 concentrations at increasing distances from the chicken houses using passive diffusion samplers and deposition using 15N-enriched biomonitors and field plot studies. The dispersion and deposition of NH3 were modelled using the Danish OML-DEP model. It was also shown that model calculations clearly reflect the measured NH3 concentration and N deposition. Deposition of N measured by biomonitors clearly reflected the variation in NH3 concentrations and showed that deposition was not significantly different from zero (P < 0.05) at distances greater than 150–200 m from these chicken houses. Calculations confirmed this, as calculated N deposition 320 m away from the chicken farm was only marginally affected by the NH3 emission from the farm. There was agreement between calculated and measured deposition showing that the model gives true estimates of the deposition in the neighbourhood of a livestock house emitting NH3.  相似文献   
    136.
    The personal assessments of the current and expected future state of the environment by 3232 community respondents in 18 nations were investigated at the local, national, and global spatial levels. These assessments were compared to a ranking of each country's environmental quality by an expert panel. Temporal pessimism (“things will get worse”) was found in the assessments at all three spatial levels. Spatial optimism bias (“things are better here than there”) was found in the assessments of current environmental conditions in 15 of 18 countries, but not in the assessments of the future. All countries except one exhibited temporal pessimism, but significant differences between them were common. Evaluations of current environmental conditions also differed by country. Citizens' assessments of current conditions, and the degree of comparative optimism, were strongly correlated with the expert panel's assessments of national environmental quality. Aside from the value of understanding global trends in environmental assessments, the results have important implications for environmental policy and risk management strategies.  相似文献   
    137.
    Numerical clustering has frequently been used to define hierarchically organized ecological regionalizations, but there has been little robust evaluation of their performance (i.e., the degree to which regions discriminate areas with similar ecological character). In this study we investigated the effect of the weighting and treatment of input variables on the performance of regionalizations defined by agglomerative clustering across a range of hierarchical levels. For this purpose, we developed three ecological regionalizations of Switzerland of increasing complexity using agglomerative clustering. Environmental data for our analysis were drawn from a 400 m grid and consisted of estimates of 11 environmental variables for each grid cell describing climate, topography and lithology. Regionalization 1 was defined from the environmental variables which were given equal weights. We used the same variables in Regionalization 2 but weighted and transformed them on the basis of a dissimilarity model that was fitted to land cover composition data derived for a random sample of cells from interpretation of aerial photographs. Regionalization 3 was a further two-stage development of Regionalization 2 where specific classifications, also weighted and transformed using dissimilarity models, were applied to 25 small scale “sub-domains” defined by Regionalization 2. Performance was assessed in terms of the discrimination of land cover composition for an independent set of sites using classification strength (CS), which measured the similarity of land cover composition within classes and the dissimilarity between classes. Regionalization 2 performed significantly better than Regionalization 1, but the largest gains in performance, compared to Regionalization 1, occurred at coarse hierarchical levels (i.e., CS did not increase significantly beyond the 25-region level). Regionalization 3 performed better than Regionalization 2 beyond the 25-region level and CS values continued to increase to the 95-region level. The results show that the performance of regionalizations defined by agglomerative clustering are sensitive to variable weighting and transformation. We conclude that large gains in performance can be achieved by training classifications using dissimilarity models. However, these gains are restricted to a narrow range of hierarchical levels because agglomerative clustering is unable to represent the variation in importance of variables at different spatial scales. We suggest that further advances in the numerical definition of hierarchically organized ecological regionalizations will be possible with techniques developed in the field of statistical modeling of the distribution of community composition.  相似文献   
    138.
    139.
    140.
    Polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and non-ortho substituted biphenyls (PCB, CB) were determined in 6 polar bear milk samples from Svalbard (Norway). For these compounds, no data for polar bears have been reported before from this region. Most of the PCDD/PCDF congeners were found at detectable levels. Concentrations expressed as 2,3,7,8-TCDD equivalents (Nordic model) were in the order of 1–3 pg/g−1 fat (0.2–1.6 pg ml−1 milk) which is comparable with ringed and harp seal blubber from the same region. On whole milk basis, concentrations were similar to those found in human milk. An estimation of the daily uptake via milk showed that the intake is lower for polar bears compared to humans. As in human milk, relatively high levels of OCDD were found in some polar bear milk samples. The PCDD/PCDF congener pattern in the milk was different to that found in polar bear fat from the Canadian Arctic. Non-ortho substituted PCB levels in polar bear milk were similar to those found in polar bear fat from the Canadian North. However, CB 77 or 169 dominated in the milk while CB 126 was the most abundant congener in fat. PCDD/PCDF levels expressed as 2,3,7,8-TE were highly correlated with the fat content of the milk. No correlation between CB and PCDD/PCDF concentrations was found. Some data indicate that PCDD/PCDF concentrations in polar bear milk decrease with increasing time after delivery.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号