Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 microg m(-3) (air) and the United States Department of Energy has implemented an action level of 0.2 microg m(-3) (air) and 0.2 microg/100 cm(2) (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation) and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will present opportunities for laboratories, research and development organizations, instrument manufacturers and others. 相似文献
Activated carbon treatment of drinking water is used to remove natural organic matter (NOM) precursors that lead to the formation of disinfection byproducts. The innate hydrophobic nature and macromolecular size of NOM render it amenable to sorption by activated carbon. Batch equilibrium and minicolumn breakthrough adsorption studies were performed using granular activated carbon to treat NOM-contaminated water. Ultraviolet (UV) absorption spectroscopy and flow field-flow fractionation analysis using tandem diode-array and fluorescence detectors were used to monitor the activated carbon sorption of NOM. Using these techniques, it was possible to study activated carbon adsorption properties of UV absorbing, fluorescing and nonfluorescing, polyelectrolytic macromolecules fractionated from the total macromolecular and nonmacromolecular composition of NOM. Adsorption isotherms were constructed at pH 6 and pH 9. Data were described by the traditional and modified Freundlich models. Activated carbon capacity and adsorbability were compared among fractionated molecular subsets of fulvic and humic acids. Preferential adsorption (or adsorptive fractionation) of polyelectrolytic, fluorescing fulvic and humic macromolecules on activated carbon was observed. The significance of observing preferential adsorption on activated carbon of fluorescing macromolecular components relative to nonfluorescing components is that this phenomenon changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the composition that existed in the aqueous phase prior to adsorption. Likewise, it changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the adsorbed phase. This research increases our understanding of NOM interactions with activated carbon which may lead to improved methods of potable water production. 相似文献
The mechanisms underlying size-assortative pairing have received considerable attention. Typically, pairing is assumed to occur at, or just prior to, the adult phase of the life cycle. However, in many invertebrates, males commence associations with juvenile females who are more than a single moult away from sexual maturity. These species are ideal to explore the importance of reproductive and survival benefits as mechanisms driving size-assortative pairing. In the Zeus bug, Phoreticovelia disparata, adult males are found riding on juvenile (fourth and fifth instar) and adult females—a behaviour that is costly for females but has survival benefits for males. Using a combination of field collections and laboratory manipulations, we show that pairing is size-assortative both within and between female age classes and that riding males are smaller than non-riding males. In a series of mating trials, we revealed that males attempt to ride any female but that their riding success is dependent on female age. We also provide the first direct evidence of female resistance to male riding attempts in P. disparata. We propose that size-assortative pairing arises through adaptations that have evolved to minimise the potential costs of sexual conflict. We suggest that the selective pressure on males to maximise survival benefits is sufficiently high that it outweighs the reproductive benefits of discriminating against fourth instar females. Finally, given that female resistance is under direct selection in juvenile females, it is likely to be the main form of selective pressure for adult females. 相似文献
Bats face unprecedented threats from habitat loss, climate change, disease, and wind power development, and populations of many species are in decline. A better ability to quantify bat population status and trend is urgently needed in order to develop effective conservation strategies. We used a Bayesian autoregressive approach to develop dynamic distribution models for Myotis lucifugus, the little brown bat, across a large portion of northwestern USA, using a four-year detection history matrix obtained from a regional monitoring program. This widespread and abundant species has experienced precipitous local population declines in northeastern USA resulting from the novel disease white-nose syndrome, and is facing likely range-wide declines. Our models were temporally dynamic and accounted for imperfect detection. Drawing on species-energy theory, we included measures of net primary productivity (NPP) and forest cover in models, predicting that M. lucifugus occurrence probabilities would covary positively along those gradients. Despite its common status, M. lucifugus was only detected during -50% of the surveys in occupied sample units. The overall naive estimate for the proportion of the study region occupied by the species was 0.69, but after accounting for imperfect detection, this increased to -0.90. Our models provide evidence of an association between NPP and forest cover and M. lucifugus distribution, with implications for the projected effects of accelerated climate change in the region, which include net aridification as snowpack and stream flows decline. Annual turnover, the probability that an occupied sample unit was a newly occupied one, was estimated to be low (-0.04-0.14), resulting in flat trend estimated with relatively high precision (SD = 0.04). We mapped the variation in predicted occurrence probabilities and corresponding prediction uncertainty along the productivity gradient. Our results provide a much needed baseline against which future anticipated declines in M. lucifugus occurrence can be measured. The dynamic distribution modeling approach has broad applicability to regional bat monitoring efforts now underway in several countries and we suggest ways to improve and expand our grid-based monitoring program to gain robust insights into bat population status and trend across large portions of North America. 相似文献
In her recent Counter-Reply to my views, Evelyn Pluhar defends her use of literature on nutrition and restates her argument for moral vegetarianism. In his Vegan Ideal article, Gary Varner claims that the nutrition literature does not show sufficient differences among women, men, and children to warrant concern about discrimination. In this response I show how Professor Pluhar continues to draw fallacious inferences: she begs the question on equality, avoids the main issue in my ethical arguments, argues from irrelevancies, misquotes her sources, equivocates on context, confuses safety with morality, appeals to fear, confuses correlation with cause, fails to evaluate scientific studies, draws hasty conclusions from insufficient data, ignores a large amount of data which would call her views into question, does not follow good scientific or moral argumentation, objectionably exceeds the limits of her expertise, and resorts to scapegoating. I also argue that Professor Varner fails to make his case because he offers virtually no evidence from scientific studies on nutrition, relies on outdated and fallacious sources, makes unsupported claims, ignores evidence that would contravene his claims, draws hasty conclusions based on weakly supported hypotheses rather than facts, employs a double standard, appeals to ignorance, does not evaluate arguments from his sources, and makes anad hominem attack on a respected nutritionist when his focus should be on evaluating the evidence and arguments from the scientific studies themselves. Neither Varner nor Pluhar have responded sufficiently to the real issue in my arguments, that of discrimination and bias in the vegan ideal. 相似文献
Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms. 相似文献
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future.
Implications: Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. 相似文献
The stocks and flows of silver throughout the Asian economy for 1997 have been quantified, with major flows examined over their entire life cycle, including mining, production, fabrication, and manufacture, product use, and waste management. By compiling the findings of 11 country-level material flow analyses, a regional analysis was created. The reliability and availability of the data varied, with the most confidence given to the earlier life stages and the most uncertainty existing later. Overall, Asia is a net importer of silver, requiring nearly 7000 Mg of silver in 1997. Approximately 2200 Mg Ag are mined, and production waste totals about 640 Mg Ag. The flow of silver into use equals 9900 Mg Ag, with a considerable build-up of 7100 Mg Ag entering in-use stock. Silver waste sent directly to the environment, in addition to landfilled waste, totals 1600 Mg Ag. Much variation exists when examining country-level silver flows on a per capita basis. India and Thailand’s fondness for silver jewelry greatly increases their silver flows into use and in-use stock. Japan’s high overall consumption reflects its high GDP per capita. Regionally, a significant potential exists to tap the silver contained in the in-use stocks and to enhance the recycling rates. 相似文献