首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   13篇
  国内免费   5篇
安全科学   13篇
废物处理   23篇
环保管理   174篇
综合类   34篇
基础理论   111篇
环境理论   1篇
污染及防治   77篇
评价与监测   29篇
社会与环境   13篇
灾害及防治   3篇
  2023年   2篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   12篇
  2017年   8篇
  2016年   12篇
  2015年   11篇
  2014年   10篇
  2013年   25篇
  2012年   12篇
  2011年   27篇
  2010年   15篇
  2009年   21篇
  2008年   27篇
  2007年   19篇
  2006年   32篇
  2005年   20篇
  2004年   21篇
  2003年   15篇
  2002年   19篇
  2001年   9篇
  2000年   12篇
  1999年   6篇
  1998年   7篇
  1997年   13篇
  1996年   5篇
  1995年   5篇
  1994年   12篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1976年   2篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1939年   1篇
排序方式: 共有478条查询结果,搜索用时 15 毫秒
471.
Reproductive success and development of F2 offspring from F1 adult African clawed frogs (Xenopus laevis) exposed to atrazine throughout larval development and as sexually mature adults was examined. Larval X. laevis were exposed to one of four nominal concentrations of atrazine (0, 1, 10, 25 microg atrazine/l) beginning 96 hr after fertilization and continuing through two years post-metamorphosis. Clutch size and survival of offspring were used as measurement endpoints to gauge reproductive success of the F1 frogs. Larval survivorship and time to metamorphosis were used to gauge developmental success of the F2 offspring from atrazine-exposed frogs. Testes in F1 and F2 frogs were examined for incidence of anomalies, such as testicular ovarian follicles, and sex ratios in F2 offspring were investigated to determine if exposure to atrazine caused trans-generational effects (effects on F2 individuals due to exposure of F1 individuals). There were no effects of any of the studied concentrations of atrazine on clutch size of F1 frogs. There were also no effects on hatching success or time to metamorphosis. Sex ratios did not differ between F2 offspring among treatments. There was no evidence to suggest a transgenerational effect of atrazine on spawning success or reproductive development of X. laevis. This is consistent with the presence of robust populations of X. laevis in areas where they are exposed to atrazine that has been used for several decades for weed control in production of corn. Our observations also are consistent with the results of most other studies of frogs where no effects were found to be associated with exposure to atrazine. Our data do not support the hypothesis that atrazine significantly affects reproductive fitness and development of frogs.  相似文献   
472.
Recent expansion within the oil sands industry of the Athabasca Basin of Alberta, Canada has led to increased concern regarding process-affected wastewaters produced during bitumen extraction. Naphthenic acids (NAs) have been identified as the primary toxic constituents of oil sands process-affected waters (OSPW) and studies have shown that with time, microbial degradation of lower molecular weight NAs has led to a decrease in observed toxicity. As earlier studies identified the need for an "unequivocal demonstration" of lower molecular weight NAs being the primary contributors to mixture toxicity, a study was initiated to fractionate an extracted NA mixture by molecular weight and to assess each fraction's toxicity. Successful molecular weight fractionation of a methylated NA mixture was achieved using a Kugelrohr distillation apparatus, in which fractions collected at higher boiling points contained NAs with greater total carbon content as well as greater degree of cyclicity. Assays with Vibrio fischeri bioluminescence (via Microtox assay) revealed that the lowest molecular weight NAs collected had higher potency (EC50: 41.9+/-2.8 mg l(-1)) than the highest molecular weight NAs collected (EC50: 64.9+/-7.4 mg l(-1)). Although these results support field observations of microbial degradation of low molecular weight NAs decreasing OSPW toxicity, it is not clear why larger NAs, given their greater hydrophobicity, would be less toxic.  相似文献   
473.
Pharmaceuticals and personal care products may enter the terrestrial environment through the amendment of agricultural soils with manure or biosolids with potential impacts on beneficial soil microbe populations. The beneficial symbiotic relationship between most plant species and arbuscular mycorrhizal fungi is a primary determinant of plant health and soil fertility. As such, there is increasing recognition of the need to study the impacts of anthropogenic stressors on plant-microbe interactions in soil ecotoxicology studies and risk assessment. A case study exploring the use of root-organ cultures to evaluate the effects of 12 common veterinary and human-use pharmaceuticals on the arbuscular mycorrhizal fungus, Glomus intraradices grown on Daucus carota root-organ cultures is presented. The bioassays were conducted over a 28-day exposure period at concentrations up to 1000mugl(-1). Root length and the fungal endpoints of hyphal growth and spore production were evaluated weekly during the study. Sulfamethoxazole and atorvastatin were the most phytotoxic compounds with EC(50) values of 45mugl(-1) and 65mugl(-1), respectively. Three compounds exhibited selective mycotoxicity, whereby the fungal symbiont was adversely affected at concentrations significantly less than that calculated for root length. The EC(50) for G. intraradices hyphal length was 45mugl(-1) for doxycycline, while carbamazepine and 17-alpha-ethynyl estradiol targeted spore production with EC(50) values of 113 and 116mugl(-1), respectively. The assay results indicate that the root lengths responded quickly to the presence of phytotoxic pharmaceuticals in the culture medium. Hyphal length is a sensitive endpoint after 21 days exposure, while spore production requires 28 days exposure before significant differences could be detected. Root-organ cultures provide an effective means to evaluate chemical stressors on arbuscular mycorrhizal fungi and can be used to screen for root-based phytotoxicity.  相似文献   
474.
Carbon dioxide sequestration in deep saline aquifers is a means of reducing anthropogenic atmospheric emissions of CO2. Among various mechanisms, CO2 can be trapped in saline aquifers by dissolution in the formation water. Vaporization of water occurs along with the dissolution of CO2. Vaporization can cause salt precipitation, which reduces porosity and impairs permeability of the reservoir in the vicinity of the wellbore, and can lead to reduction in injectivity. The amount of salt precipitation and the region in which it occurs may be important in CO2 storage operations if salt precipitation significantly reduces injectivity. Here we develop an analytical model, as a simple and efficient tool to predict the amount of salt precipitation over time and space. This model is particularly useful at high injection velocities, when viscous forces dominate.First, we develop a model which treats the vaporization of water and dissolution of CO2 in radial geometry. Next, the model is used to predict salt precipitation. The combined model is then extended to evaluate the effect of salt precipitation on permeability in terms of a time-dependent skin factor. Finally, the analytical model is corroborated by application to a specific problem with an available numerical solution, where a close agreement between the solutions is observed. We use the results to examine the effect of assumptions and approximations made in the development of the analytical solution. For cases studied, salt saturation was a few percent. The loss in injectivity depends on the degree of reduction of formation permeability with increased salt saturation. For permeability-reduction models considered in this work, the loss in injectivity was not severe. However, one limitation of the model is that it neglects capillary and gravity forces, and these forces might increase salt precipitation at the bottom of formation particularly when injection rate is low.  相似文献   
475.
The US Environmental Protection Agency (US EPA) launched the Resource Conservation Challenge (RCC) in 2002 to help reduce waste and move towards more sustainable resource consumption. The objective of the RCC is to help communities, industries, and the public think in terms of materials management rather than waste disposal. Reducing cost, finding more efficient and effective strategies to manage municipal waste, and thinking in terms of materials management requires a holistic approach that considers life-cycle environmental tradeoffs. The US EPA's National Risk Management Research Laboratory has led the development of a municipal solid waste decision support tool (MSW-DST). The computer software can be used to calculate life-cycle environmental tradeoffs and full costs of different waste management or materials recovery programs. The environmental methodology is based on the use of life-cycle assessment and the cost methodology is based on the use of full-cost accounting. Life-cycle inventory (LCI) environmental impacts and costs are calculated from the point of collection, handling, transport, treatment, and disposal. For any materials that are recovered for recycling, offsets are calculated to reflect potential emissions savings from use of virgin materials. The use of the MSW-DST provides a standardized format and consistent basis to compare alternatives. This paper provides an illustration of how the MSW-DST can be used by evaluating ten management strategies for a hypothetical medium-sized community to compare the life-cycle environmental and cost tradeoffs. The LCI results from the MSW-DST are then used as inputs into another US EPA tool, the Tool for the reduction and assessment of chemical and other environmental impacts, to convert the LCI results into impact indicators. The goal of this paper is to demonstrate how the MSW-DST can be used to identify and balance multiple criteria (costs and environmental impacts) when evaluating options for materials and waste management. This type of approach is needed in identifying strategies that lead to reduced waste and more sustainable resource consumption. This helps to meet the goals established in the US EPA's Resource Conservation Challenge.  相似文献   
476.
477.
Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated in the ash in the WTE scenario, the MSW landfill scenario releases a greater amount of arsenic from leachate in a more dilute form. The WTE scenario releases more chromium from the ash on an annual basis. The WTE facility and subsequent ash disposal greatly concentrates the chromium, often oxidizing it to the more toxic and mobile Cr(VI) form. Elevated arsenic and chromium concentrations in the ash leachate may increase leachate management costs.  相似文献   
478.
Air quality models are typically used to predict the fate and transport of air emissions from industrial sources to comply with federal and state regulatory requirements and environmental standards, as well as to determine pollution control requirements. For many years, the U.S. Environmental Protection Agency (EPA) widely used the Industrial Source Complex (ISC) model because of its broad applicability to multiple source types. Recently, EPA adopted a new rule that replaces ISC with AERMOD, a state-of-the-practice air dispersion model, in many air quality impact assessments. This study compared the two models as well as their enhanced versions that incorporate the Plume Rise Model Enhancements (PRIME) algorithm. PRIME takes into account the effects of building downwash on plume dispersion. The comparison used actual point, area, and volume sources located on two separate facilities in conjunction with site-specific terrain and meteorological data. The modeled maximum total period average ground-level air concentrations were used to calculate potential health effects for human receptors. The results show that the switch from ISC to AERMOD and the incorporation of the PRIME algorithm tend to generate lower concentration estimates at the point of maximum ground-level concentration. However, the magnitude of difference varies from insignificant to significant depending on the types of the sources and the site-specific conditions. The differences in human health effects, predicted using results from the two models, mirror the concentrations predicted by the models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号