首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   10篇
  国内免费   9篇
安全科学   15篇
废物处理   12篇
环保管理   96篇
综合类   57篇
基础理论   111篇
环境理论   2篇
污染及防治   78篇
评价与监测   27篇
社会与环境   11篇
灾害及防治   12篇
  2023年   9篇
  2022年   5篇
  2021年   10篇
  2020年   8篇
  2019年   5篇
  2018年   7篇
  2017年   12篇
  2016年   15篇
  2015年   13篇
  2014年   16篇
  2013年   34篇
  2012年   14篇
  2011年   34篇
  2010年   24篇
  2009年   20篇
  2008年   20篇
  2007年   17篇
  2006年   14篇
  2005年   21篇
  2004年   7篇
  2003年   8篇
  2002年   14篇
  2001年   10篇
  2000年   6篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1974年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1962年   1篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
71.
The potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO2] - is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO2 enrichment technology was used to investigate the effects of elevated [CO2] on SOM pools in a conservation tilled corn-soybean rotation. After 5 and 6 y of CO2 enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO2 treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO2 treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO2-stimulated photosynthesis.  相似文献   
72.
A kinetically based gas-particle partitioning box model is used to highlight the importance of parameter representation in the prediction of secondary organic aerosol (SOA) formation following the photo-oxidation of toluene. The model is initialized using experimental data from York University's indoor smog chamber and provides a prediction of the total aerosol yield and speciation. A series of model sensitivity experiments were performed to study the aerosol speciation and mass prediction under high NOx conditions (VOC/NOx = 0.2). Sensitivity experiments indicate vapour pressure estimation to be a large area of weakness in predicting aerosol mass, creating an average total error range of 70 μg m?3 (range of 5–145 μg m?3), using two different estimation methods. Aerosol speciation proved relatively insensitive to changes in vapour pressure. One species, 3-methyl-6-nitro-catechol, dominated the aerosol phase regardless of the vapour pressure parameterization used and comprised 73–88% of the aerosol by mass. The dominance is associated with the large concentration of 3-methyl-6-nitro-catechol in the gas-phase. The high NOx initial conditions of this study suggests that the predominance of 3-methyl-6-nitro-catechol likely results from the cresol-forming branch in the Master Chemical Mechanism taking a significant role in secondary organic aerosol formation under high NOx conditions. Further research into the yields and speciation leading to this reaction product is recommended.  相似文献   
73.
The effect of the spatial variability of Kd on calculations of contaminant travel time in the vadose zone was determined. Depth discrete measurements of Kd were made for a suite of radionuclides (109Cd, 57Co, 60Co, 85Sr, 137Cs, and 88Y) utilizing a sediment core from the E-Area at the Savannah River Site. The Kd’s were ordered as 85Sr2+ < 137Cs+ < 109Cd2+ < 57Co2+ = 60Co2+ << 88Y3+ and the values generally fell below or near the lowest quartile of values reported in the literature. Correlations were generally weak between soil properties and Kd values. Most importantly, all of the Kd distributions could be reasonably approximated as log-normal. Deterministic and stochastic calculations of contaminant travel time to the water table were made. The deterministic calculations were based on each of three conceptual models of the vadose zone: complete stratification (17 strata, each with a different Kd), two strata (two sections of the vadose zone, each characterized by a single, average Kd), and unstratified (a single zone with an average Kd). Stochastic calculations were based on log-normal fits to the Kd data. The two strata model generally yielded travel times 2× greater than those in the completely stratified model. The unstratified model yielded travel times that were between 3 and 5 times greater than the completely stratified model. The stochastic mean travel times were comparable to those of the two strata model.  相似文献   
74.
75.
Ambient ozone measurements in the United States and many other countries are traceable to a National Institute of Standards and Technology Standard Reference Photometer (NIST SRP). The NIST SRP serves as the highest level ozone reference standard in the United States, with NIST SRPs located at NIST and at many U.S. Environmental Protection Agency (EPA) laboratories. The International Bureau of Weights and Measures (BIPM) maintains a NIST SRP as the reference standard for international measurement comparability through the International Committee of Weights and Measures (CIPM). In total, there are currently NIST SRPs located in 20 countries for use as an ozone reference standard. A detailed examination of the NIST SRP by the BIPM and NIST has revealed a temperature gradient and optical path-length bias inherent in all NIST SRPs. A temperature gradient along the absorption cells causes incorrect temperature measurements by as much as 2 °C. Additionally, the temperature probe used for temperature measurements was found to inaccurately measure the temperature of the sample gas due to a self-heating effect. Multiple internal reflections within the absorption cells produce an actual path length longer than the measured fixed length used in the calculations for ozone mole fractions. Reflections from optical filters located at the exit of the absorption cells add to this effect. Because all NIST SRPs are essentially identical, the temperature and path-length biases exist on all units by varying amounts dependent upon instrument settings, laboratory conditions, and absorption cell window alignment. This paper will discuss the cause of, and physical modifications for, reducing these measurement biases in NIST SRPs. Results from actual NIST SRP bias upgrades quantifying the effects of these measurement biases on ozone measurements are summarized.

Implications: NIST SRPs are maintained in laboratories around the world underpinning ozone measurement calibration and traceability within and between countries. The work described in this paper quantifies and shows the reduction of instrument biases in NIST SRPs improving their overall agreement. This improved agreement in all NIST SRPs provides a more stable baseline for ozone measurements worldwide.  相似文献   
76.
Thompson K  Zhang J  Zhang C 《Chemosphere》2011,84(8):1066-1071
Effluents from sewage treatment plants (STPs) are known to contain residual micro-contaminants including endocrine disrupting chemicals (EDCs) despite the utilization of various removal processes. Temperature alters the efficacy of removal processes; however, experimental measurements of EDC removal at various temperatures are limited. Extrapolation of EDC behavior over a wide temperature range is possible using available physicochemical property data followed by the correction of temperature dependency. A level II fugacity-based STP model was employed by inputting parameters obtained from the literature and estimated by the US EPA’s Estimations Programs Interface (EPI) including EPI’s BIOWIN for temperature-dependent biodegradation half-lives. EDC removals in a three-stage activated sludge system were modeled under various temperatures and hydraulic retention times (HRTs) for representative compounds of various properties. Sensitivity analysis indicates that temperature plays a significant role in the model outcomes. Increasing temperature considerably enhances the removal of β-estradiol, ethinyestradiol, bisphenol, phenol, and tetrachloroethylene, but not testosterone with the highest biodegradation rate. The shortcomings of BIOWIN were mitigated by the correction of highly temperature-dependent biodegradation rates using the Arrhenius equation. The model predicts well the effects of operating temperature and HRTs on the removal via volatilization, adsorption, and biodegradation. The model also reveals that an impractically long HRT is needed to achieve a high EDC removal. The STP model along with temperature corrections is able to provide some useful insight into the different patterns of STP performance, and useful operational considerations relevant to EDC removal at winter low temperatures.  相似文献   
77.
We assessed the extent to which constituents of PM2.5 (transition metals, sodium, chloride) contribute to the ability to generate hydroxyl radicals (OH) in vitro in PM2.5 sampled at 20 locations in 19 European centres participating in the European Community Respiratory Health Survey. PM2.5 samples (n = 716) were collected on filters over one year and the oxidative activity of particle suspensions obtained from these filters was then assessed by measuring their ability to generate OH in the presence of hydrogen peroxide. Associations between OH formation and the studied PM constituents were heterogeneous. The total explained variance ranged from 85% in Norwich to only 6% in Albacete. Among the 20 centres, 15 showed positive correlations between one or more of the measured transition metals (copper, iron, manganese, lead, vanadium and titanium) and OH formation. In 9 of 20 centres OH formation was negatively associated with chloride, and in 3 centres with sodium. Across 19 European cities, elements which explained the largest variations in OH formation were chloride, iron and sodium.  相似文献   
78.
Many studies on geological carbon dioxide (CO2) storage capacity neglect the influence of complex coupled processes which occur during and after the injection of CO2. Storage capacity is often overestimated since parts of the reservoirs cannot be reached by the CO2 plume due to gravity segregation and are thus not accessible for storage. This work investigates the effect of reservoir parameters like depth, temperature, absolute and relative permeability, and capillary pressure on the processes during CO2 injection and thus on estimates of effective storage capacity. The applied statistical characteristics of parameters are based on a large reservoir parameter database. Different measured relative permeability relations are considered. The methodology of estimating storage capacity is discussed. Using numerical 1D and 3D experiments, detailed time-dependent storage capacity estimates are derived. With respect to the concept developed in this work, it is possible to estimate effective CO2 storage capacity in saline aquifers. It is shown that effective CO2 mass stored in the reservoir varies by a factor of 20 for the reservoir setups considered. A high influence of the relative permeability relation on storage capacity is shown.  相似文献   
79.
Montane Meadows as Indicators of Environmental Change   总被引:1,自引:0,他引:1  
We used a time series of satellite multispectral imagery for mapping and monitoring six classes of montane meadows arrayed along a moisture gradient (from hydric to mesic to xeric). We hypothesized that mesic meadows would support the highest species diversity of plants, birds, and butterflies because they are more moderate environments. We also hypothesized that mesic meadows would exhibit the greatest seasonal and interannual variability in spectral response across years. Field sampling in each of the meadow types was conducted for plants, birds, and butterflies in 1997 and 1998. Mesic meadows supported the highest plant species diversity, but there was no significant difference in bird or butterfly species diversity among meadow types. These data show that it may be easier to detect significant differences in more species rich taxa (e.g., plants) than taxa that are represented by fewer species (e.g., butterflies and birds). Mesic meadows also showed the greatest seasonal and interannual variability in spectral response. Given the rich biodiversity of mesic montane meadows and their sensitivity to variations in temperature and moisture, they may be important to monitor in the context of environmental change  相似文献   
80.

Problem

Between 1992 and 2005, 1412 workers on farms died from tractor overturns. A Rollover Protective Structure (ROPS) is a proven intervention to reduce overturn deaths. However, farm characteristics that are associated with the adoption of ROPS are not well understood.

Methods

ROPS prevalence statistics were derived from National Institute for Occupational Safety and Health (NIOSH) surveys that tracked ROPS use on farms. Data were from the years 1993, 2001, and 2004.

Results

In 1993, 38% of tractors were equipped with ROPS. This increased to 51% by 2004. ROPS prevalence rates were higher on farms in the Southern region of the United States, on farms where the operator was 25-34 years old, and on farms with $100,000 or more of farm sales. Low ROPS prevalence rates were associated with farm operators 65 years old or older and with farms with less than $10,000 of farm product sales.

Summary

The increase in ROPS prevalence between 1993 and 2004 has not been sufficient to decrease the rate of tractor overturn deaths on farms. Incentive programs targeting older farm operators and low-income farm operations are suggested to increase ROPS use on tractors.

Impact on Industry

The study provides farm characteristics associated with low ROPS prevalence rates. The results can be used to target farms for future ROPS promotion activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号