首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   1篇
  国内免费   1篇
安全科学   4篇
废物处理   10篇
环保管理   24篇
综合类   9篇
基础理论   58篇
环境理论   1篇
污染及防治   26篇
评价与监测   11篇
社会与环境   5篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2013年   16篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   7篇
  2006年   9篇
  2005年   11篇
  2004年   8篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1996年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1985年   4篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
121.
Tetrachloroethene (PCE)‐ and trichloroethene (TCE)‐impacted sites pose significant challenges even when site characterization activities indicate that biodegradation has occurred naturally. Although site‐specific, regulatory, and economic factors play roles in the remedy‐selection process, the application of molecular biological tools to the bioremediation field has streamlined the assessment of remedial alternatives and allowed for detailed evaluation of the chosen remedial technology. The case study described here was performed at a PCE‐impacted site at which reductive dechlorination of PCE and TCE had led to accumulation of cis‐dichlorethene (cis‐DCE) with concentrations ranging from approximately 10 to 100 mg/L. Bio‐Trap® samplers and quantitative polymerase chain reaction (qPCR) enumeration of Dehalococcoides spp. were used to evaluate three remedial options: monitored natural attenuation, biostimulation with HRC®, and biostimulation with HRC‐S®. Dehalococcoides populations in HRC‐S‐amended Bio‐Traps deployed in impacted wells were on the order of 103 to 104 cells/bead but were below detection limits in most unamended and HRC‐amended Bio‐Traps. Thus the in situ Bio‐Trap study identified biostimulation with HRC‐S as the recommended approach, which was further evaluated with a pilot study. After the pilot HRC‐S injection, Dehalococcoides populations increased to 106 to 107 cells/bead, and concentrations of cis‐DCE and vinyl chloride decreased with concurrent ethene production. Based on these results, a full‐scale HRC‐S injection was designed and implemented at the site. As with the pilot study, full‐scale HRC‐S injection promoted growth of Dehalococcoides spp. and stimulated reductive dechlorination of the daughter products cis‐DCE and vinyl chloride. © 2008 Wiley Periodicals, Inc.  相似文献   
122.
123.
Recent expansion within the oil sands industry of the Athabasca Basin of Alberta, Canada has led to increased concern regarding process-affected wastewaters produced during bitumen extraction. Naphthenic acids (NAs) have been identified as the primary toxic constituents of oil sands process-affected waters (OSPW) and studies have shown that with time, microbial degradation of lower molecular weight NAs has led to a decrease in observed toxicity. As earlier studies identified the need for an "unequivocal demonstration" of lower molecular weight NAs being the primary contributors to mixture toxicity, a study was initiated to fractionate an extracted NA mixture by molecular weight and to assess each fraction's toxicity. Successful molecular weight fractionation of a methylated NA mixture was achieved using a Kugelrohr distillation apparatus, in which fractions collected at higher boiling points contained NAs with greater total carbon content as well as greater degree of cyclicity. Assays with Vibrio fischeri bioluminescence (via Microtox assay) revealed that the lowest molecular weight NAs collected had higher potency (EC50: 41.9+/-2.8 mg l(-1)) than the highest molecular weight NAs collected (EC50: 64.9+/-7.4 mg l(-1)). Although these results support field observations of microbial degradation of low molecular weight NAs decreasing OSPW toxicity, it is not clear why larger NAs, given their greater hydrophobicity, would be less toxic.  相似文献   
124.
Abstract

In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.  相似文献   
125.
Two pilot tests of an aerobic in situ bioreactor (ISBR) have been conducted at field sites contaminated with petroleum hydrocarbons. The two sites differed with respect to hydrocarbon concentrations. At one site, concentrations were low but persistent, and at the other site concentrations were high enough to be inhibitory to biodegradation. The ISBR unit is designed to enhance biodegradation of hydrocarbons by stimulating indigenous microorganisms. This approach builds on existing Bio‐Sep® bead technology, which provides a matrix that can be rapidly colonized by the active members of the microbial community and serves to concentrate indigenous degraders. Oxygen and nutrients are delivered to the bioreactor to maintain conditions favorable for growth and reproduction, and contaminated groundwater is treated as it is circulated through the bed of Bio‐Sep® beads. Groundwater moving through the system also transports degraders released from Bio‐Sep® beads away from the bioreactor, potentially increasing biodegradation rates throughout the aquifer. Groundwater sampling, Bio‐Traps, and molecular biological tools were used to assess ISBR performance during the two pilot tests. Groundwater monitoring indicated that contaminant concentrations decreased at both sites, and the microbial data suggested that these decreases were due to degradation by indigenous microorganisms rather than dilution or dispersion mechanisms. Taken together, these lines of evidence showed that the ISBR system effectively increased the number and activity of indigenous microbial degraders and enhanced bioremediation at the test sites. © 2013 Wiley Periodicals, Inc.  相似文献   
126.
A nanofiltration strategy for tailing pond waters (TPWs) that utilizes cyclodextrin (CD)-based polymeric materials as supramolecular sorbents is proposed. Naphthenic acids (NAs) from the Athabasca TPWs are investigated as the target sorbate molecules.The sorption properties of several supramolecular porous materials were characterized using equilibrium sorption isotherms in aqueous solution wherein electrospray ionization mass spectrometry was used to monitor the concentration of NAs in aqueous solution. The characterization of the supramolecular sorbents was performed using 13C NMR and IR spectroscopy, while nitrogen porosimetry was used to estimate their surface area and pore structure properties. Independent estimates of surface area were obtained using a chromophore dye adsorption method in aqueous solution.The sorption results for NAs in solution were compared between a commercially available standard; granular activated carbon (GAC) and three types of synthetic materials. The sorption capacities for GAC ranged from 100 to 160 mg NAs/g of material whereas the polymeric materials ranged from 20 to 30 mg NAs/g of material over the experimental conditions investigated. In general, differences in the sorption properties between GAC and the CD-based sorbents were observed and related to differences in the surface areas of the materials and the chemical nature of the sorbents. The CD-based supramolecular materials displayed sorption capacities ranging from 36.2 to 657 m2/g as compared to that for GAC (795 m2/g).  相似文献   
127.
Organic soil amendments can be useful for improving degraded soil, but this increase in organic matter (OM) may influence adsorption of herbicides subsequently applied to the treated soil, even though the particle size of amendments and their nature differ from typical soil OM. In this study, a batch equilibrium method was used to measure adsorption of five herbicides following application to two organic media, wood pulp and sawdust, comparing these with two cropping soils. Herbicide adsorption, quantified by distribution coefficients (kd), was much higher in the two organic media than in the cropping soils. The increases in adsorption were strongly correlated to the percentage of organic carbon. When the kd was normalized to adsorption coefficients corrected for OM content (koc), variation in results between the media was greatly reduced, indicating that OM is an important factor influencing adsorption in these media. The results of this study suggest that herbicides will be less effective when applied to soils in which sawdust and wood pulp have been added. Using organic amendments to remediate soil will increase adsorption of pesticides, reducing their bio-availability and efficacy, but also reducing their tendency to leach into root zones of deep-rooted crops and into groundwater.  相似文献   
128.
During the summers of 2002 and 2004, in-stream integrated flow and concentration measurements for the total dissolved solids in the Cheyenne River, South Dakota, USA was conducted in order to compare the obtained actual field measurements with the predictions values made by the Bureau of Reclamation in the Environmental Impact Statement. In comparison to the actual field measurements conducted in this study, The Bureau of Reclamation extension of a small database used in the analysis for the impact of operations at the Angostura Unit over the past 50 years and into the future to predict the annual total dissolved solid loadings doesn't represent the actual loading values and various conditions in the study area. Additional integrated flow and concentration sampling is required to characterize the impact of the current Angostura Dam operations and Angostura Irrigation District return flows on the Cheyenne River in different seasons of the year.  相似文献   
129.
A Natural Environment Research Council (NERC) funded Knowledge Transfer (KT) workshop was held in the United Kingdom (UK) to identify the needs and opportunities in the application of molecular biology and ‘omics’ techniques to environmental monitoring and risk assessment. Attendees highlighted a lack of effective communication between end-users and researchers as well as difficulties with data interpretation as reasons behind the slow uptake of molecular biology and omics techniques. A number of promising areas in which new techniques could be implemented at a practical level in the very near future were identified, thereby raising the profile of these recent technologies and providing vital proof of concept work. Molecular taxonomy, bacterial source tracking and pre-screening of chemicals for potential toxicities were all viewed as areas in which omics and molecular techniques could have immediate value, with the aim of reducing cost, increasing efficiency and providing more comprehensive data of improved quality.  相似文献   
130.
Wang J  McPhedran KN  Seth R  Drouillard KG 《Chemosphere》2007,69(11):1802-1806
Screening level risk assessment models are used by many countries to assess the treatability of organic chemicals during the sewage treatment process, especially those that are new to commerce. The performance of one such model, the sewage treatment plant model, is evaluated in the current study by comparing model predictions with actual measurement data collected at various stages of a typical full-scale activated sludge type sewage treatment plant. A suite of ten polycyclic aromatic hydrocarbons (PAHs) with widely varying physico–chemical properties were monitored for the comparison. Model predicted removal efficiencies were in very good agreement with those measured for all ten PAHs. Observed chemical concentrations and their trends at various stages of the sewage treatment process were also well simulated by the model. Results also suggest that a reasonable first approximation estimate of a range for the biodegradation half-life needed for the model may be obtained by dividing reported aqueous biodegradation half-life by scaling factors of 50 and 150.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号