首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   3篇
废物处理   1篇
环保管理   7篇
综合类   3篇
基础理论   3篇
污染及防治   11篇
社会与环境   3篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2011年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
21.
Total phosphorus (TP) loads in many rivers in the north-central United States have increased, including the Illinois River at Valley City, Illinois, USA, which increased 39% from the periods 1989–1996 to 2015–2019 despite efforts to reduce loads from point and nonpoint sources. Here, we quantify long-term variations in phosphorus (P) loads in the Illinois River and its tributaries and identify factors that may be causing the variations. We calculated river loads of dissolved (DP) and particulate P (PP), total and volatile suspended solids (TSS and VSS), and other potentially related constituents at 41 locations. DP loads generally increased and PP and TSS loads generally decreased from 1989–1996 to 2015–2019. During 1989–1996, P accumulated in the lower basin between Marseilles and Valley City (excluding monitored tributaries). This portion of the basin is very flat and accumulates sediment. During 2015–2019, this section shifted from being a net sink to being a net source of P, accounting for 78% of the increased TP load at Valley City. We present evidence supporting several mechanisms that could have caused this shift: increased DP and chloride loads, reduced sulfate and nitrate concentrations influencing ionic strength and redox potential in the sediments, and increased VSS loads at Valley City possibly indicating greater algal production and contributing to hypoxia in lower river sediments. Additional research is needed to quantify the relative importance of these mechanisms.  相似文献   
22.
Abstract

Increasing public concerns over odors and air regulations in nonattainment zones necessitate the remediation of a wide range of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Currently, wet scrubbers using oxidizing chemicals such as chlorine dioxide (ClO2) are utilized to treat VOCs. However, little information is available on the kinetics of ClO2 reaction with rendering air pollutants, limiting wet scrubber design and optimization. Kinetic analysis indicated that ClO2 does not react with hexanal and 2-methylbutanal regardless of pH and temperature and implied that alde-hyde removal occurs primarily via mass transfer. Contrary to the aldehydes, ethanethiol or ethyl mercaptan (a model compound for methanethiol or methyl mercaptan) and dimethyl disulfide (DMDS) rapidly reacted with ClO2. The overall reaction was found to be second and third order for ethanethiol and DMDS, respectively. Moreover, an increase in pH from 3.6 to 5.1 exponentially increased the reaction rate of ethanethiol (e.g., k 2 = 25– 4200 L/mol/sec from pH 3.6 to 5.1) and significantly increased the reaction rate of DMDS if increased to pH 9 (k 3 = 1.4 × 106 L2/mol2/sec). Thus, a small increase in pH could significantly improve wet scrubber operations for removal of odor-causing compounds. However, an increase in pH did not improve aldehyde removal. The results explain why aldehyde removal efficiencies are much lower than methanethiol and DMDS in wet scrub-bers using ClO2.  相似文献   
23.
Increasing public concerns over odors and air regulations in nonattainment zones necessitate the remediation of a wide range of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Currently, wet scrubbers using oxidizing chemicals such as chlorine dioxide (ClO2) are utilized to treat VOCs. However, little information is available on the kinetics of ClO2 reaction with rendering air pollutants, limiting wet scrubber design and optimization. Kinetic analysis indicated that ClO2 does not react with hexanal and 2-methylbutanal regardless of pH and temperature and implied that aldehyde removal occurs primarily via mass transfer. Contrary to the aldehydes, ethanethiol or ethyl mercaptan (a model compound for methanethiol or methyl mercaptan) and dimethyl disulfide (DMDS) rapidly reacted with ClO2. The overall reaction was found to be second and third order for ethanethiol and DMDS, respectively. Moreover, an increase in pH from 3.6 to 5.1 exponentially increased the reaction rate of ethanethiol (e.g., k2 = 25-4200 L/mol/sec from pH 3.6 to 5.1) and significantly increased the reaction rate of DMDS if increased to pH 9 (k3 = 1.4 x 10(6) L2/mol2/sec). Thus, a small increase in pH could significantly improve wet scrubber operations for removal of odor-causing compounds. However, an increase in pH did not improve aldehyde removal. The results explain why aldehyde removal efficiencies are much lower than methanethiol and DMDS in wet scrubbers using ClO2.  相似文献   
24.
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m−2 d−1. Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m−3, but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m−3, remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S1 and semi-diurnal S2 periodic components. At the advection-dominated points, radon concentration did not exhibit S1 or S2 components. At the reference points, however, the S2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle.  相似文献   
25.
Environmental Management - Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean...  相似文献   
26.
Das KC  Xia K 《Chemosphere》2008,70(5):761-768
4-Nonylphenol, a degradation intermediate of commercial surfactant and known endocrine disruptor, has been frequently detected at levels up to several thousand microgl(-1) in surface waters and up to several hundred mgkg(-1) (dry weight) in soil and sediment samples. Large quantities of 4-NP can be quickly sorbed by the organic rich solid phase during wastewater treatment and are concentrated in biosolids, a possible major source for 4-NP in the environment. Microbial transformation in culture studies followed different mechanisms for different 4-NP isomers, which have different estrogenic activity. Composting is a process of solid matrix transformation where biological activity is enhanced by process control. This approach has been used successfully in remediation of contaminated soils and sludges. In this study, the transformation kinetics of 4-NP and its isomers were characterized during biosolids composting. Five distinctive 4-NP isomer groups with structures relative to alpha- and beta-carbons of the alkyl chain were identified in biosolids. Composting biosolids mixed with wood shaving at a dry weight percentage ratio of 43:57 (C:N ratio of 65:1) removed 80% of the total 4-NP within two weeks. At this biosolids/wood shaving ratio (B:WS), the transformation of total 4-NP and its isomers followed second-order kinetic. Higher B:WS ratios yielded significantly slower 4-NP transformation which followed first-order kinetic. Isomers with alpha-methyl-alpha-propyl structure transformed significantly slower than those with less branched tertiary alpha-carbon and those with secondary alpha-carbon, suggesting isomer-specific degradation of 4-NP during biosolids composting.  相似文献   
27.
Environmental Science and Pollution Research - Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate...  相似文献   
28.
Environmental Science and Pollution Research - Asthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号