首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   985篇
  免费   29篇
  国内免费   20篇
安全科学   55篇
废物处理   34篇
环保管理   179篇
综合类   135篇
基础理论   254篇
环境理论   2篇
污染及防治   232篇
评价与监测   95篇
社会与环境   32篇
灾害及防治   16篇
  2023年   8篇
  2022年   7篇
  2021年   10篇
  2020年   9篇
  2019年   12篇
  2018年   20篇
  2017年   21篇
  2016年   31篇
  2015年   28篇
  2014年   19篇
  2013年   79篇
  2012年   50篇
  2011年   73篇
  2010年   45篇
  2009年   45篇
  2008年   61篇
  2007年   69篇
  2006年   58篇
  2005年   49篇
  2004年   50篇
  2003年   41篇
  2002年   39篇
  2001年   22篇
  2000年   16篇
  1999年   16篇
  1998年   15篇
  1997年   8篇
  1996年   16篇
  1995年   11篇
  1994年   10篇
  1993年   10篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   10篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1970年   3篇
排序方式: 共有1034条查询结果,搜索用时 0 毫秒
91.
Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here, we apply a recently developed methodology that circumvents the GCM limitation of coarse resolution in order to project future changes in aridity on small islands. These climate projections are combined with independent population projections associated with shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5 and 2 °C above pre-industrial levels. While we find that future population growth will dominate changes in projected freshwater stress especially toward the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. For several SIDS, particularly across the Caribbean region, a substantial fraction (~?25%) of the large overall freshwater stress projected under 2 °C at 2030 can be avoided by limiting global warming to 1.5 °C. Our findings add to a growing body of literature on the difference in climate impacts between 1.5 and 2 °C and underscore the need for regionally specific analysis.  相似文献   
92.
Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite‐inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid‐20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host‐density threshold and cost‐benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host–parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.  相似文献   
93.
ABSTRACT: A simulation model [Salmonid Spawning Analysis Model (SSAM)] was developed as a management tool to evaluate the relative impacts of stream sediment load and water temperature on salmonid egg survival. The model is useful for estimating acceptable sediment loads to spawning habitat that may result from upland development, such as logging and agriculture. Software in common use in the USA were adapted for use in gravel bedded rivers and linked to simulate water temperature (the USFWS Instream Water Temperature, SNTEMP model) and water and sediment routing (the USAE Scour and Deposition in Rivers and Reservoirs, HEC-6 model, version 3.2). These models drive the redd (spawning nest) model (the USDA-ABS Sediment Intrusion Dissolved Oxygen SIDO model) which simulates sediment intrusion and dissolved oxygen concentration in the redd environment. The SSAM model predictions of dissolved oxygen and water temperature compared favorably with field data from artificial redds containing hatchery chinook salmon eggs.  相似文献   
94.
The 1991 EU Nitrate Directive was designed to reduce water pollution from agriculturally derived nitrates. England and Wales implemented this Directive by controlling agricultural activities within their most vulnerable areas termed Nitrate Vulnerable Zones. These were designated by identifying drinking water catchments (surface and groundwater), at risk from nitrate pollution. However, this method contravened the Nitrate Directive because it only protected drinking water and not all waters. In this paper, a GIS was used to identify all areas of groundwater vulnerable to nitrate pollution. This was achieved by constructing a model containing data on four characteristics: the quality of the water leaving the root zone of a piece of land; soil information; presence of low permeability superficial (drift) material; and aquifer properties. These were combined in a GIS and the various combinations converted into a measure of vulnerability using expert knowledge. Several model variants were produced using different estimates of the quality of the water leaving the root zone and contrasting methods of weighting the input data. When the final models were assessed all produced similar spatial patterns and, when verified by comparison with trend data derived from monitored nitrate concentrations, all the models were statistically significant predictors of groundwater nitrate concentrations. The best predictive model contained a model of nitrate leaching but no land use information, implying that changes in land use will not affect designations based upon this model. The relationship between nitrate levels and borehole intake depths was investigated since there was concern that the observed contrasts in nitrate levels between vulnerability categories might be reflecting differences in borehole intake depths and not actual vulnerability. However, this was not found to be statistically important. Our preferred model provides the basis for developing a new set of groundwater Nitrate Vulnerable Zones that should help England and Wales to comply with the EU Nitrate Directive.  相似文献   
95.
Many national exposure programmes have been performed in tropical and subtropical climates during the last 50 years. However, ambitious programmes involving more than a few countries are scarce. In this paper a recently formed network of test sites is described involving 12 test sites in Asia (India, Vietnam, Thailand, Malaysia and China including Hong Kong) and four test sites in Africa (South Africa, Zambia and Zimbabwe). This effort is part of the 2001–2004 Swedish International Development Agency (SIDA) funded Programme on Regional Air Pollution in Developing Countries (RAPIDC). Corrosion attack after one (2002–2003) year of exposure (carbon steel, zinc, copper, limestone and paint coated steel) are presented together with environmental data (SO2, NO2, HNO3, O3, particles, amount and pH of precipitation, temperature and relative humidity) for all the test sites. The obtained corrosion values are substantially higher than expected for limestone, higher than expected for carbon steel and lower than expected for zinc compared to values calculated using the best available dose–response functions.  相似文献   
96.
Rarity and Body Size: Some Cautionary Remarks   总被引:1,自引:0,他引:1  
  相似文献   
97.
Tillage and field scale controls on greenhouse gas emissions   总被引:3,自引:0,他引:3  
There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.  相似文献   
98.
Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3 °C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.  相似文献   
99.
Air-vegetation exchange of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the air-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on air/plant exchange of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of air-vegetation exchange do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of air-plant exchange and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons to be made between studies in order to improve our understanding of what causes any differences in measured data between sites.  相似文献   
100.
20 0 0wasarelativelynormalyearintermsofglobaldisasterevents.Thegloballossfromnaturaldisasterswasapproximately 30billionUSD ,whereasthatinanyofthepreviousyearshadexceeded 1 0 0billionUSD .Theinsurancelossin 2 0 0 0wasonly 8.3billionUSD ,with 92 0 0 personskilled .Therewasn…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号