首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   0篇
  国内免费   35篇
安全科学   55篇
废物处理   46篇
环保管理   54篇
综合类   62篇
基础理论   86篇
环境理论   1篇
污染及防治   296篇
评价与监测   89篇
社会与环境   35篇
灾害及防治   4篇
  2023年   22篇
  2022年   78篇
  2021年   72篇
  2020年   15篇
  2019年   25篇
  2018年   16篇
  2017年   31篇
  2016年   25篇
  2015年   12篇
  2014年   18篇
  2013年   67篇
  2012年   33篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   20篇
  2007年   28篇
  2006年   13篇
  2005年   12篇
  2004年   11篇
  2003年   15篇
  2002年   16篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有728条查询结果,搜索用时 31 毫秒
531.
Temperature fluctuation inside the cabinet of a household refrigerator significantly affects the quality of preserved food. Phase change material (PCM) is a latent heat storage system that can store and release the heat energy by changing its phase from liquid to solid and solid to liquid respectively. Therefore, use of PCM inside the refrigerator cabinet has the potential for minimizing the temperature fluctuation during the door opening and the power failure. However, very few studies in the literature were dedicated to investigating the role of PCM to reduce the temperature fluctuation. The aim of this work is to experimentally investigate the effects of PCM on temperature fluctuation inside the cabinet of a household refrigerator during the door opening and power failure. The results found that a significantly lower temperature fluctuation can be obtained using PCM. It was found that during the door opening condition the air temperature in the cabinet rose rapidly. However, when a PCM container was used, temperature variation was reduced to 3–5°C. During the power failure, the system with PCM maintained a lower temperature inside the storage chamber for a long period of time (about 2 hours). Moreover, the test results indicate that PCM maintains more stable temperature in the foodstuffs inside the refrigerator. This reduction of temperature fluctuation ultimately improves the quality of preserved food.  相似文献   
532.
Natural bituminous coal was used as a precursor in the synthesis of different modified products. The modification of coal was performed by treating it with nitric acid (N-coal), coating its surface by zinc oxide nanoparticles (Z-coal), and converting it into porous graphite (PG). The effect of modification processes on the structures, morphologies, and optical properties was followed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrum (FT-IR), and UV/VIS spectrophotometer analysis. The surface of N-coal grains becomes smoother than the surface of raw coal grains due to the removal of the associated impurities and the formation of nitrogen function groups. For Z-coal, the whole surface of coal grains appears to be completely covered by agglomerated ZnO nanoparticles of massive density and irregular shapes. The average crystallite size of the formed ZnO is ~22.2 nm and density of dislocations is 2.029 × 10?3 dislocation/nm2. Also, the removal of safranin-T dye by natural bituminous coal and its modified forms was investigated as a function of contact time, adsorbent mass, initial dye concentration, and pH value. At pH 8, the PG showed higher efficiency (96%) than Z-coal (93.5%), N-coal (74.5%), and natural coal (62%) after 2 h for 0.1 g on 100 mg/L dye. The obtained results are well fitted by pseudo-second-order kinetic than by intraparticle diffusion and Elovich kinetic models for the adsorption by N-coal, Z-coal, and PG, whereas the adsorption by raw coal is well fitted with both pseudo-second-order and Elovich kinetic models. The Langmuir isotherm model fits well the equilibrium adsorption isotherm of safranin by raw coal and its modified forms. The values of maximum adsorption capacity were calculated for raw coal, N-coal, Z-coal, and PG to be 21.3, 27.4, 32.46, and 33.67 mg/g, respectively. A monolayer model with one energy and a monolayer model with two energies as advanced equilibrium models were investigated for more physical interpretation of the adsorption process. The calculated parameters (number of adsorbed molecules per site and number of receptor sites per unit mass) reflected the role of modification processes in the adsorption behavior of safranin.
Graphical abstract High volatile bituminous coal and its modified forms have been used for the removal of Safranin-T dye from aqueous solution.
  相似文献   
533.
The current study examined the effect of calcium (Ca) and ethylenediaminetetraacetic acid (EDTA) on arsenic (As) uptake and toxicity to spinach (Spinacia oleracea) as well as assessed the potential human health risks. Spinach seedlings were exposed to three levels of As (25, 125, and 250 μM) alone or together with three levels of EDTA (25, 125, and 250 μM) and Ca (1, 5, and 10 mM). The effect of EDTA and Ca was assessed in terms of As contents in roots and shoots, hydrogen peroxide production, chlorophyll contents, and lipid peroxidation. The accumulation and toxicity of As to spinach plants increased with increasing As levels in nutrient solution. Exposure to As resulted in lipid peroxidation and reduced chlorophyll contents. The highest level of As alone (250 μM) showed highest human health risk (hazard quotient of 7.09 at As-250). Addition of EDTA enhanced As accumulation by spinach, while reduced As toxicity to spinach, as well as human health risk (hazard quotient of 4.01 at As-250). Similarly, Ca significantly reduced As toxicity to spinach and the human health risks (hazard quotient of 3.79 at As-250) by reducing its accumulation in spinach. Higher levels of Ca were more effective in reducing As uptake and toxicity as well as enhancing chlorophyll contents.  相似文献   
534.
People in the developing world derive a significant part of their livelihoods from various forest products, particularly non-timber forest products (NTFPs). This article attempts to explore the contribution of NTFPs in sustaining forest-based rural livelihood in and around a protected area (PA) of Bangladesh, and their potential role in enhancing households' resilience capacity. Based on empirical investigation, our study revealed that local communities gather a substantial amount of NTFPs from national park despite the official restrictions. Twenty seven percent households (HHs) of the area received at least some cash benefit from the collection, processing and selling of NTFPs, and NTFPs contribute to HHs' primary, supplementary and emergency sources of income. NTFPs also constituted an estimated 19% of HHs' net annual income, and were the primary occupation for about 18% of the HHs. HHs' dependency on nearby forests for various NTFPs varied vis-à-vis their socio-economic condition, as well as with their location from the park. Based on our case study, the article also offers some clues for improving the situation in PA.  相似文献   
535.
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.  相似文献   
536.
Continuous fixed-bed studies were undertaken to evaluate the efficiency of jackfruit leaf powder (JLP) as an adsorbent for the removal of methylene blue (MB) from aqueous solution under the effect of various process parameters like bed depth (5–10 cm), flow rate (30–50 mL/min) and initial MB concentrations (100–300 mg/L). The pH at point of zero charge (pHPZC) of the adsorbent was determined by the titration method and a value of 3.9 was obtained. A FTIR of the adsorbent was done before and after the adsorption to find the potential adsorption sites for interaction with methylene blue molecules. The results showed that the total adsorbed quantities and equilibrium uptake decreased with increasing flow rate and increased with increasing initial MB concentration. The longest breakthrough time and maximum MB adsorption were obtained at pH 10. The results showed that the column performed well at low flow rate. Also, breakthrough time and exhaustion time increased with increasing bed depth. The bed-depth service time (BDST) model and the Thomas model were applied to the adsorption of MB at different bed depths, flow rates, influent concentrations and pH to predict the breakthrough curves and to determine the characteristic parameters of the column that are useful for process design. The two model predictions were in very good agreement with the experimental results at all the process parameters studied indicating that they were very suitable for JLP column design.  相似文献   
537.
Bench-scale sand column breakthrough experiments were conducted to examine atrazine removal in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, (i) tracers, (ii) immobilized dead cells, (iii) immobilized cells, and (iv) free cells, were performed. The atrazine biodegradation at the cell loadings of 300, 600, and 900 mg dry cells L(-1) and the infiltration rates of 1, 3, and 6 cm d(-1) were tested for 5 column pore volumes (PV). The atrazine breakthrough results indicated that the immobilized dead cells significantly retarded atrazine transport. The atrazine removal efficiencies at the infiltration rates of 1, 3, and 6 cm d(-1) were 100%, 80-97%, and 50-70%, respectively. Atrazine degradation capacity for the immobilized cells was not significantly different from the free cells. Both infiltration rate and cell loading significantly affected atrazine removal for both cell systems. The bacterial loss from the immobilized cell system was 10-100 times less than that from the free cell system. For long-term tests at 50 PV, the immobilized cell system provided consistent atrazine removal efficiency while the atrazine removal by the free cells declined gradually because of the cell loss.  相似文献   
538.
539.
Removal of Volatile Organic Compounds from polluted air   总被引:39,自引:0,他引:39  
Volatile Organic Compounds (VOCs) are among the most common air pollutants emitted from chemical, petrochemical, and allied industries. VOCs are one of the main sources of photochemical reaction in the atmosphere leading to various environmental hazards; on the other hand, these VOCs have good commercial value. Growing environmental awareness has put up stringent regulations to control the VOCs emissions. In such circumstances, it becomes mandatory for each VOCs emitting industry or facility to opt for proper VOCs control measures. There are many techniques available to control VOCs emission (destruction based and recovery based) with many advantages and limitations. Therefore, deciding on a particular technique becomes a difficult task. This article illustrates various available options for VOCs control. It further details the merits, demerits and applicability of each option. The authors hope that this article will help in critically analysing the requirements and accordingly decide on the appropriate strategy to control VOCs.  相似文献   
540.
Aromatic amines were analysed by normal phase and reverse phase high performance liquid chromatography employing silica gel and octadecyl silane (ODS) columns, respectively. A number of mobile phases were used. The results obtained on silica gel column were compared with those achieved on reverse phase column. Excellent results were obtained on ODS and shoulder peaks were eliminated when a mixture of methyl alcohol and sodium perchlorate was used as mobile phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号