The management of river basins is complex especially when decisions about environmental flows are considered in addition to those concerning urban and agricultural water demand. The solution to these complex decision problems requires the use of mathematical techniques that are formulated to take into account conflicting objectives. Many optimization models exist for water management systems but there is a knowledge gap in linking bio-economic objectives with the optimum use of all water resources under conflicting demands. The efficient operation and management of a network of nodes comprising storages, canals, river reaches and irrigation districts under environmental flow constraints is challenging. Minimization of risks associated with agricultural production requires accounting for uncertainty involved with climate, environmental policy and markets. Markets and economic criteria determine what crops farmers would like to grow with subsequent effect on water resources and the environment. Due to conflicts between multiple goal requirements and the competing water demands of different sectors, a multi-criteria decision-making (MCDM) framework was developed to analyze production targets under physical, biological, economic and environmental constraints. This approach is described by analyzing the conflicts that may arise between profitability, variable costs of production and pumping of groundwater for a hypothetical irrigation area. 相似文献
● Properties and performance relationship of CSBT photocatalyst were investigated.● Properties of CSBT were controlled by simply manipulating glycerol content.● Performance was linked to semiconducting and physicochemical properties.● CSBT (W:G ratio 9:1) had better performance with lower energy consumption.● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent. Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater. 相似文献
Environmental Science and Pollution Research - This study utilized the Pooled Mean Group estimator to investigate the effect of renewable energy consumption, electricity consumption, economic... 相似文献
The diamondback moth, Plutella xylostella, is recognized as a widely distributed destructive insect pest of Brassica worldwide. The management of this pest is a serious issue, and an estimated annual cost of its management has reached approximately US$4 billion. Despite the fact that chemicals are a serious threat to the environment, lots of chemicals are applied for controlling various insect pests especially P. xylostella. An overreliance on chemical control has not only led to the evolution of resistance to insecticides and to a reduction of natural enemies but also has polluted various components of water, air, and soil ecosystem. In the present scenario, there is a need to implement an environmentally friendly integrated pest management (IPM) approach with new management tactics (microbial control, biological control, cultural control, mating disruption, insecticide rotation strategies, and plant resistance) for an alternative to chemical control. The IPM approach is not only economically beneficial but also reduces the environmental and health risks. The present review synthesizes published information on the insecticide resistance against P. xylostella and emphasizes on adopting an alternative environmentally friendly IPM approach for controlling P. xylostella in China. 相似文献
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future. 相似文献
This study has been focused on the efficient removal of Pb (II) from contaminated waters by biosorption using plant derived material. Accordingly an indigenous shrub, Tinospora cordifolia has been identified as the most suitable biosorbent. The plant biomass was subjected to optimization of various parameters such as the pH, equilibrium time, dosage, concentration, temperature and the applicable adsorption models. The optimum pH identified was 4.0 with a contact time of 60 min at room temperature (27 ± 2 °C). The experimental data fitted well to adsorption isotherms and the uptake capacity of Pb (II) was found to be 20.83 and 63.77 mg/g in batch mode and column mode, respectively. The high correlation factors obtained for Langmuir and Freundlich models indicated that both models were obeyed by the system. Kinetic study for adsorption of Pb (II) follow only pseudo second order rate of reaction. The accumulation of lead in biomass was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The FTIR analysis indicated the involvement of hydroxyl (−OH), alkenes (=CH) and carbonyl group (C = O) chelates in metal binding. The SEM and EDX analysis showed the structural changes and the filling of voids in the biomass thus, it indicated the metal-binding mechanism. In elution studies, the 0.1 M Na2CO3 was found to be the best with about 71% elution of the adsorbed metal. The biomass was then used for the removal of Pb (II) in synthetic and real wastewater samples from a lead-acid battery industry. It is also noteworthy that even at a very high concentration of 450 mg/L, the biomass was showing about 92% removal. The result is to establish the efficacy of T. cordifolia as a very good bioadsorbent for the Pb (II) removal from contaminated water.
The root growth response to air pollution in populations of Anagallis arvensis growing about 0.5, 2, 6, 12 and 20 km leeward from a power plant complex varied with the level of pollution, age of the stand and meteorological conditions. The roots were more affected by the pollutants at a young stage and the loss in net primary productivity was proportional to the pollution level. The populations up to 2 km from the source of pollution completed their life cycle quickly. The coal consumption rate at the power plant, relative humidity, wind direction and other environmental factors were found to influence the degree of growth response to air pollution. 相似文献
The impact of sulphur dioxide, in two different concentrations (286 microg m(-3) and 571 microg m(-3)) for various exposure periods, on conidial germination of some powdery mildew fungi was investigated in artificial treatment conditions. SO(2) in general was inhibitory for conidial germination of all the studied powdery mildew fungi and the species did not differ much from each other in their sensitivity to SO(2). The per cent conidial germination was increasingly inhibited with an increase in the concentration of SO(2). The concentration of SO(2) and the exposure period were important determinants of the inhibitory effect. 相似文献
Two incubation experiments were conducted to evaluate differences in the microbial use of non-contaminated and heavy metal contaminated nettle (Urtica dioica L.) shoot residues in three soils subjected to heavy metal pollution (Zn, Pb, Cu, and Cd) by river sediments. The microbial use of shoot residues was monitored by changes in microbial biomass C, biomass N, biomass P, ergosterol, N mineralisation, CO(2) production and O(2) consumption rates. Microbial biomass C, N, and P were estimated by fumigation extraction. In the non-amended soils, the mean microbial biomass C to soil organic C ratio decreased from 2.3% in the low metal soil to 1.1% in the high metal soils. In the 42-d incubation experiment, the addition of 2% nettle residues resulted in markedly increased contents of microbial biomass P (+240%), biomass C (+270%), biomass N (+310%), and ergosterol (+360%). The relative increase in the four microbial properties was similar for the three soils and did not show any clear heavy metal effect. The contents of microbial biomass C, N and P and ergosterol contents declined approximately by 30% during the incubation as in the non-amended soils. The ratios microbial biomass C to N, microbial biomass C to P, and ergosterol to microbial biomass C remained constant at 5.2, 26, and 0.5%, respectively. In the 6-d incubation experiment, the respiratory quotient CO(2)/O(2) increased from 0.74 in the low metal soil to 1.58 in the high metal soil in the non-amended soils. In the treatments amended with 4% nettle residues, the respiratory quotient was constant at 1.13, without any effects of the three soils or the two nettle treatments. Contaminated nettle residues led generally to significantly lower N mineralisation, CO(2) production and O(2) consumption rates than non-contaminated nettle residues. However, the absolute differences were small. 相似文献
Environmental Science and Pollution Research - The current study investigated the influence of organic amendments on cadmium (Cd) uptake and its effects on biochemical attributes of young and old... 相似文献