首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   16篇
  国内免费   73篇
安全科学   76篇
废物处理   186篇
环保管理   183篇
综合类   160篇
基础理论   277篇
环境理论   2篇
污染及防治   651篇
评价与监测   163篇
社会与环境   63篇
灾害及防治   16篇
  2023年   20篇
  2022年   37篇
  2021年   36篇
  2020年   15篇
  2019年   29篇
  2018年   44篇
  2017年   58篇
  2016年   82篇
  2015年   43篇
  2014年   71篇
  2013年   140篇
  2012年   105篇
  2011年   119篇
  2010年   96篇
  2009年   109篇
  2008年   122篇
  2007年   108篇
  2006年   100篇
  2005年   87篇
  2004年   83篇
  2003年   57篇
  2002年   62篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有1777条查询结果,搜索用时 0 毫秒
71.
The role of clouds as the primary pathway for deposition of air pollutants into ecosystems has recently acquired much attention. Moreover, the acidity of clouds is highly variable over short periods of time. Cloud water collections were made at Mt. Mitchell State Park, North Carolina, using a real-time cloud and rain acidity/ conductivity (CRAC) analyzer during May to September 1987, 1988 and 1989 in an effort to explore extremes of chemical exposure. On the average, the mountain peak was exposed to cloud episodes about 70 percent of experimental days. The lowest pH of cloud water in nearly real-time (~10 min.) samples was 2.4, while that in hourly integrated samples was 2.6. The cloud pH during short cloud events (mean pH 3.1), whjch results from the orographic lifting mechanism, was lower than that during long cloud events (mean pH 3.5), which are associated with mesoscale or synoptic atmospheric disturbances. On the average, the pH values in nonprecipitating cloud events were about 0.4 pH unit lower than those in precipitating cloud events. Sulfate, nitrate, ammonium and hydrogen ions were found to be the major constituents of cloud water, and these accounted for -90 percent of the ionic concentration. Total ionic concentrations were found to be much higher in non-precipitating clouds (670-3,010 μeq/L) than those in precipitating clouds (220-370 μeq/L). At low acidity, ionic balance is sometimes not obtained. It is suggested that organic acids may provide this balance.

The profile of cloud water ionic concentration versus time was frequently observed to show decrease at the beginning and rising toward the end during short cloud events. Before the dissipation of clouds, a decrease in cloud water pH and an increase in ionic concentration were found. At the same time, temperature and solar radiation increased, and relative humidity and microphysical parameters (liquid water content, average droplet size, and droplet concentration) decreased. These observations suggest that evaporative dissipation of cloud droplets leads to acidification of cloud water. Mean pH of cloud water was 3.4 when the prevailing wind was from the northwest direction, and it was 3.9 when the wind was from the west direction. The effects of variations in cloud liquid water content have been separated from variations in pre-cloud pollutant concentrations to determine the relationship between source intensity and cloud water concentrations.  相似文献   
72.
While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.  相似文献   
73.
This paper presents a design method by which the overflow risk related to a detention for managing nonpoint pollutant sources in urban areas can be evaluated. The overall overflow risk of a nonpoint pollutant sources control detention can be estimated by inherent overflow risk and operational overflow risk. For the purpose of calculating overflow risk, the 3-parameter mixed exponential distribution is applied to describe the probability distribution of rainfall event depth. As a rainfall-runoff calculation procedure required for deriving a rainfall capture curve, the U.S. Natural Resources Conservation Service runoff curve number method is applied to consider the nonlinearity of the rainfall-runoff relation. Finally, the detention overflow risk is assessed with respect to the detention design capacity and drainage time. The proposed overflow risk assessment is expected to provide a baseline to determine quantitative parameters in designing a nonpoint sources control detention.  相似文献   
74.
In this paper, emission and distribution behavior of six heavy metals (As, Cd, Cr, Ni, Pb, and Hg), particulate matter and mass distribution of mercury within the different streams of a fluidized bed sewage sludge incinerator are presented. At the inlet of air pollution control devices (APCDs); Cd, Cr, Ni and Pb were mainly enriched in coarse particles; comparatively As content was higher in fine particles (<PM2.5). The concentration of heavy metals in total particulate matter and PM2.5, at the inlet of APCDs, were in the order of Cr > Ni > Pb > As > Cd. Mercury was almost always distributed in flue gas. Metals, other than mercury, were efficiently removed in APCDs and their concentrations in bottom ash, with fly ash being higher, whereas for that in wastewater, then waste sand was lesser. Overall mercury removal efficiency of APCDs was 98.6 %. More than 83.3 % of mercury was speciated into oxidized form at the inlet of APCDs, attributed by higher chlorine content in sludge. Mercury was mainly distributed in wastewater (78.4 %), wastewater from a spray dry reactor (16.8 %), fly ash in a hopper (3.4 %) and flue gas (1.4 %). This result is one of the first for data to be obtained; more experiments are required to control emission from such sources.  相似文献   
75.
Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90?m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30?m) comparison (in all cases P?>?0.05). However, in the medium (≤60?m) and large (≤90?m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P?<?0.001). Research implications are explored that relate to the spatial extent of the radial patterns of impact of trampling on vegetation at the site level. Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.  相似文献   
76.
To better understand arsenic (As) bioaccumulation, a soil invertebrate species was exposed to 17 field soils contaminated with arsenic due to mining activity. Earthworms (Eisenia fetida) were kept in the soils for 70 days under laboratory conditions, as body burden increased and failed to reach equilibrium in all soils. After 70 days of exposure, XANES spectra determined that As was biotransformed to a highly reduced form. Uptake kinetics for As was calculated using one compartment model. Stepwise multiple regression suggested that sorbed As in soils are bioaccessible, and uptake is governed by soil properties (iron oxide, sulfate, and dissolved organic carbon) that control As mobility in soils. As in soil solution are highly related to uptake rate except four soils which had relatively high chloride or phosphate. The results imply that uptake of As is through As interaction with soil characteristics as well as direct from the soil solution. Internal validation showed that empirically derived regression equations can be used for predicting As uptake as a function of soil properties within the range of soil properties in the data set.  相似文献   
77.
Levee failure and overtopping as a result of Hurricane Katrina caused major flooding of New Orleans, Louisiana. Floodwaters, which were contaminated with heavy metals, organic chemicals, and fecal coliform bacteria (FCB), were pumped into neighboring Lake Pontchartrain during dewatering. The impact of levee failure on water and benthic sediment concentrations in the lake was investigated by applying a numerical water quality model coupled to a three-dimensional, numerical hydrodynamic model. The model was used to compute water and benthic sediment concentrations throughout the lake for lead, arsenic, benzo(a)pyrene (BaP), and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), and water concentrations for FCB. Computed concentrations resulting from actual pumped discharges with levee failure and overtopping were compared to computed concentrations resulting from pumped discharges without levee failure or overtopping, and concentrations from both sets of conditions were compared to ecological water and sediment quality screening guideline values. The model indicated that incremental increases above pre-Katrina benthic sediment concentrations are about a factor of 10 greater with dewatering of the floodwaters than with dewatering of storm water without flooding. However, these increases for the metals are small relative to pre-Katrina concentrations. The results showed that the ecological screening-level sediment quality guideline values were exceeded for BaP and DDE in areas near the south shoreline of the lake as a result of floodwater pump-out, whereas, this was not the case for storm water removal without flooding. The model showed that lake water column concentrations should be about the same during both dewatering conditions regardless of whether there is flooding or not.  相似文献   
78.
An increase in the chemical oxygen demand (COD) has been noticed in most Korean reservoirs. Therefore, this research systematically investigated the causes of organic accumulation. Samples of soil affecting the quality of water of reservoirs were collected at various sources and analyzed for their organic characteristics. The COD to biochemical oxygen demand (BOD) ratio was used as the key parameter in the evaluation of non-biodegradable (NBD) organic accumulation in the reservoirs. Soil samples containing plant roots were agitated, with the supernatant showing COD/BOD ratios of less than 2.8, while those of the composted tree leaves were greater than 5.0, suggesting that humic substances produced in forest areas are a major cause of NBD organic accumulation in reservoirs. In addition, the organic fractionation of the leachate from leaching tests showed that of the various types of hydrophobic natural organic matter (NOM), the larger molecular weight humic acid makes a greater contribution than fulvic acid to the increase in the NBD COD in Korean reservoirs.  相似文献   
79.
Byun Y  Ko KB  Cho M  Namkung W  Shin DN  Lee JW  Koh DJ  Kim KT 《Chemosphere》2008,72(4):652-658
The oxidation of gas phase elemental mercury (Hg0) by atmospheric pressure non-thermal plasma has been investigated at room temperature, employing both dielectric barrier discharge (DBD) of the gas mixture of Hg0 and injection of ozone (O3) into the gas mixture of Hg0. Results have shown that the oxidative efficiencies of Hg0 by DBD and the injection of O3 are 59% and 93%, respectively, with energy consumption of 23.7 J L(-1). This combined approach has indicated that O3 plays a decisive role in the oxidation of gas phase Hg0. Also the oxidation of Hg0 by injecting O3 into the gas mixture of Hg0 proceeds with better efficiency than DBD of the gas mixture of Hg0. These results have been explained by the incorporation of the competitive reaction pathways between the formation of HgO by O3 and the decomposition of HgO back to Hg0 in the plasma environment.  相似文献   
80.
Lim JH  Kim JC  Kim KJ  Son YS  Sunwoo Y  Han JS 《Chemosphere》2008,73(4):470-478
The emission rates and compositions of monoterpene from Pinus densiflora were investigated in the Gumsung (GM) and Worak (WM) mountains. The standard emission rates (ERs: ERs is the monoterpene emission rate at standard temperature, 30 degrees C) from P. densiflora ranged from 0.817 to 1.704 (mugC/gdw-h). The ERs and beta-values of total monoterpene were measured at the two study sites (GM and WM). In the spring and summer, the ERs were the highest, while relatively low values (<0.058mugC/gdw-h) were measured in the autumn and winter. In GM and WM sites the beta-value obtained for the different seasons ranged from 0.047 to 0.179, with an average of 0.09. The major monoterpene compounds from P. densiflora were alpha-pinene, myrcene, beta-phellandrene, d-limonene and alpha-terpinene. The fractional compositions of individual monoterpene compounds were significantly different between the two test sites in the summer and winter. The ERs of the older group (31-40 years) were higher than those in the younger group (21-30 years). However, the monoterpene compositions were similar between the two age groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号