The Langmuir isotherm, originally derived for the adsorption of gas molecules on solid surfaces, was modified to fit the adsorption isotherm of solutes onto solid surfaces in solution systems. The aim of this modification is based on the fact that direct application of the Langmuir isotherm to solution systems often leads to poor data fitting. In the present communication, it is shown that the level of data fitting to the Langmuir isotherm of literature data can be improved by a simple modification introducing a concentration dependent factor, X. The key concept of the modification lies in that the concentration of solute affects both adsorption and desorption stages. As a first approximation, we adopted a single-term polynomial for both processes of adsorption and desorption. Based on reanalysis of literature data of adsorption in solution, we confirmed that indeed the modified Langmuir isotherm more accurately describes the experimental observations. Furthermore, we proposed that the concentration dependent factor could be associated with the surface heterogeneity index that was introduced in a few other modified Langmuir isotherms. Some advantages and limitations of proposed modified Langmuir isotherm are also discussed. 相似文献
This study examines the local/regional DMS oxidation chemistry on Jeju Island (33.17 degrees N, 126.10 degrees E) during the Asian dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26, respectively. For comparative purposes, a non-Asian-dust-storm (NADS) period was also considered in this study, which represents the entire measurement periods in April except the ADS events. The atmospheric concentrations of DMS and SO2 were measured at a ground station on Jeju Island, Korea, as part of the ACE-Asia intensive operation. DMS (means of 34-52 pptv) and SO2 (means of 0.96-1.14 ppbv) levels measured during the ADS period were higher than those (mean of 0.45 ppbv) during the NADS period. The enhanced DMS levels during the ADS period were likely due to the increase in DMS flux under reduced oxidant levels (OH and NO3). SO2 levels between the two contrasting periods were affected sensitively by some factors such as air mass origins. The diurnal variation patterns of DMS observed during the two periods were largely different from those seen in the background environment (e.g., the marine boundary layer (MBL)). In contrast to the MBL, the maximum DMS value during the ADS period was seen in the late afternoon at about sunset; this reversed pattern appears to be regulated by certain factors (e.g., enhanced NO3 oxidation). The sea-to-air fluxes of DMS between the ADS and NADS periods were calculated based on the mass-balance photochemical-modeling approach; their results were clearly distinguished with the values of 4.4 and 2.4 micromole m(-2) day(-1), respectively. This study confirmed that the contribution of DMS oxidation to observed SO2 levels on Jeju Island was not significant during our study period regardless of ADS or NADS periods. 相似文献
This study is to elucidate the specific accumulation of 20 trace elements in tissues/organs of great cormorants from two different colonies (Lake Biwa and Mie) in Japan. In the body distribution of trace elements, some elements revealed tissue-specific accumulation such as most of the burden of Mo, Ag and Cd in liver, Tl and Cd in kidney, Cu, Rb and Cs in muscle, and V, Sr and Ba in bone. Gender-related variation was not observed in both populations for most of the trace elements, except for higher hepatic Sr in males from Lake Biwa. Hepatic V, muscular Hg and Tl, and Cd in liver, kidney and muscle increased with growth. Comparison of trace element levels in tissues between the two colonies showed that Cr, Rb, Sr, Cd, Cs, Ba and Tl levels were higher in Lake Biwa than in Mie, whereas Zn, Co and Hg in Mie samples were greater than Lake Biwa. Variations of elemental levels in stomach contents also showed similar patterns, thus, showing that dietary sources tended to be the main factor for these regional variations. Toxic Hg and Cd concentrations in the liver of cormorants from the two colonies were lower than those from other areas, implying relatively low exposure to these metals in the present study sites. Concentrations of V, Co, Ag, Cd, Cs, Hg, Tl, Pb and Bi in liver remained more or less at the same level between 1993 and 2003, while hepatic Cr, Mn, Cu, Zn, Se, Rb, Sr and Ba showed apparent decrease, which might be related to the biological factors. 相似文献
The effects of several conditional factors on efficiency of U bioleaching using an iron-oxidizer, Acidithiobacillus ferrooxidans, from U-bearing black shale (349 mg kg-1 of U) were investigated. When batch-type reactors containing black shale were initially inoculated with the cells, lower pH, higher redox potential and higher amount of aqueous Fe3+ than those of non-inoculated reactor were observed until 200 h. Such development of condition, which was facilitated by microbial activity, can enhance the rate and extent of U leaching from the solid substrate. However, under the condition of enough nutrients and energy source (Fe2+) supplied, indigenous Fe-oxidizers in the non-inoculated black shale were activated over time. They exerted almost same influence on the leaching efficiency with the inoculated samples after 250 h. Low initial Fe2+ supply (5 g l-1) and no addition of inorganic nutrients resulted in nearly identical extent of U leaching with that of 9 g l-1 of initial Fe2+ and nutrients supply. The results indicate that, in a practical process of bioleaching, the expenses for Fe2+ and nutrients addition can be reduced. 相似文献
The exchange processes of CH4 were investigated in a paddy field in the Hari area of Kang Hwa Island over an 8 day period in late April 2002. The quantification of CH4 fluxes was made under dry field condition of early spring by concurrently measuring its concentrations (at the two heights of 1 and 5 m) and the relevant micrometeorological parameters. To help elucidate the factors determining the mobilization characteristics of CH4, the results of our measurement data were examined using a number of approaches. The results of the trajectory analysis indicated that its concentration changed very sensitively with the influence of different source types, as seen from the air mass movement patterns. The concentrations and fluxes of methane, when examined over this short-term scale, showed moderately strong patterns across 24 h period in which higher values tend to occur during morning or evening. The overall results of our field measurements suggest that CH4 exchange processes in the paddy area proceeded in a fairly complicated manner. The study area behaved as a net source of CH4 to the atmosphere with a net daily emission rate of 3.6 mg m−2 despite the fact that downward deposition was observed more frequently than upward emission. 相似文献
Seasonal variations of emission rates and compositions from coniferous species were measured under controlled conditions using a vegetation enclosure method. Total emission rates and compositions of monoterpene compounds from young and adult trees in different seasons were compared.
It was found that the total emission rates and the components of monoterpene varied significantly with tree species, age, and season. Total emissions from C. japonica and P. koraiensis were higher for older trees than for younger trees; however, significantly higher emissions were found from younger trees for C. obtusa. Higher monoterpene emission rates from each plant were found in spring and summer compared with autumn and winter emissions. 相似文献
Fish samples (perch, roach, vendace and rainbow trout) from the lake area in castern Finland were found to be contaminated not only with PCB- and DDT-compounds but also with chlordane-compounds. The contents of pollutants were strongly species specific and were studied against the biotransformation capacity of the fishes. No chlordane compounds were found in rainbow trout, which is superior to the other species in its biotransformation capacity. 相似文献
Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation. 相似文献
Organic carbon (OC) and elemental carbon (EC) in fine particles (PM2.5) at two background sites, Kosan and Kangwha in Korea were measured during intensive field studies between 1994 and 1999. Fine particles were collected on pre-fired quartz filters in a low-volume sampler and analyzed using the selective thermal oxidation method with MnO2 catalyst. The OC and EC concentrations at Kosan located at western tip of Cheju Island in southern Korea are lower than those at Kangwha located at western coastal area in mid-Korean peninsula. Still, the OC concentrations at Kosan are generally higher than those at other background areas in Japan and USA. The EC concentrations at Kosan are lower than or comparable to those at other background areas. The total carbon (TC, sum of OC and EC) to EC ratio values at both sites were higher than those at other background areas in Japan and USA. At Kosan, the OC and EC concentrations when air parcels were from southern China were higher than those when air parcels were coming from northern China. However, at Kangwha, the differences were statistically not clear since most air parcels were from northern China. Except when air parcels were from the North Pacific during summer, the OC and EC concentrations are well correlated indicating that both OC and EC share the same emission/transport characteristics. From the gaseous hydrocarbon data and the OC and EC relationship, it was found that during summer local biogenic emissions of OC might be significant at Kosan. 相似文献
To develop standard toxic gas mixtures, it is essential to identify adsorption characteristics of each toxic gas on the inner surface of a gas cylinder. Thus, this study quantified adsorbed amounts of the four toxic gases (nitric oxide [NO], nitrogen dioxide [NO2], sulfur dioxide [SO2], and hydrogen chloride [HCl]) on the inner surface of aluminum cylinders and nickel-coated manganese steel cylinders. After eluting adsorbed gases on the inside of cylinders with ultrapure water, a quantitative analysis was performed on an ion chromatograph. To evaluate the reaction characteristics of the toxic gases with cylinder materials, quantitative analyses of nickel (Ni), iron (Fe), and aluminum (Al) were also performed by inductively coupled plasma optical emission spectrometry (ICP-OES). It was found that the amounts of NO, NO2, and SO2 adsorbed on the inner surface of aluminum cylinders were less than 1.0% at the level of 100 μmol/mol mixing ratio, whereas the signal for most heavy metal elements were below their respective detection limits. This study found that the amounts of HCl adsorbed on the inner surface of nickel-coated manganese steel cylinders were less than 5% at the level of 100 μmol/mol mixing ratio, whereas Ni (86 μmol) and Fe (28 μmol) were detected in the same cylinders. It was revealed that the adsorption mainly took place via the reaction of HCl with inner surface material of nickel-coated manganese steel cylinders. On the other hand, in the case of aluminum cylinders, the amounts of the adsorption were determined to be less than 1% at the level of HCl 100 μmol/mol mixing ratio, whereas most of Ni, Fe, and Al were detected at levels similar to their limits of detection. As a result, this study found that aluminum cylinders are more suitable for preparing HCl gas mixtures than nickel-coated manganese steel cylinders.
Implications: To develop a standard toxic gas mixture, it is essential to understand the adsorption characteristics of each toxic gas inside a gas cylinder. It was found that the amounts of NO, NO2, and SO2 adsorbed inside aluminum cylinders were less than 1.0% at the level of 100 μmol/mol mixing ratio. The amounts of HCl adsorbed inside nickel-coated manganese steel cylinders were less than 5% at the level of 100 μmol/mol mixing ratio, whereas those inside aluminum cylinders were less than 1%, indicating that aluminum cylinders are more suitable for preparing HCl gas mixtures. 相似文献