首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   483篇
  免费   10篇
  国内免费   1篇
安全科学   16篇
废物处理   17篇
环保管理   52篇
综合类   232篇
基础理论   57篇
污染及防治   81篇
评价与监测   17篇
社会与环境   9篇
灾害及防治   13篇
  2020年   5篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   22篇
  2012年   10篇
  2011年   16篇
  2010年   13篇
  2009年   5篇
  2008年   18篇
  2007年   12篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   11篇
  2000年   10篇
  1996年   5篇
  1993年   4篇
  1992年   6篇
  1984年   6篇
  1983年   8篇
  1981年   9篇
  1977年   6篇
  1965年   8篇
  1963年   4篇
  1962年   7篇
  1961年   5篇
  1960年   6篇
  1959年   7篇
  1958年   4篇
  1957年   12篇
  1956年   7篇
  1955年   8篇
  1954年   7篇
  1952年   5篇
  1941年   7篇
  1940年   8篇
  1939年   10篇
  1938年   4篇
  1937年   8篇
  1936年   5篇
  1935年   11篇
  1934年   7篇
  1931年   5篇
  1929年   4篇
  1928年   4篇
  1927年   4篇
  1926年   5篇
排序方式: 共有494条查询结果,搜索用时 125 毫秒
101.
Commercial production and use of fullerene (C60) nanomaterials will inevitably lead to their release into the environment, where knowledge of C60 fate and transport is limited. In this study, a series of one-dimensional column experiments was conducted to assess the transport and retention of nanoscale fullerene aggregates (nC60) in water-saturated soils. Under the experimental conditions, complete retention of nC60 was observed in columns (2.5 cm inside diameter x 11 cm length) packed with Appling or Webster soil, which contain 0.75 and 3.33% organic carbon by weight, respectively. When the volume of aqueous nC60 suspension (approximately 4.5 mg L(-1)) applied to Appling soil was increased from 5 to 65 pore volumes, the travel distance increased from 3 to 8 cm, and the retention capacity approached a limiting value of 130 microg g(-1), although nC60 was not detected in the column effluent. The addition of 20 mg C L(-1) Suwannee River humic acid to the influent suspension increased the nC60 transport in Appling soil but did not resul in breakthrough. Attempts to simulate the experimental data using clean-bed filtration theory were not satisfactory, yielding retention profiles that failed to match observed data. Subsequent incorporation of a limiting retention capacity expression into the mathematical model resulted in accurate predictions of the measured nC60 retention profiles and transport behavior. The sizable retention capacities observed in this study suggest that transport of nC60 is limited in relatively fine-textured soils containing appreciable amounts of clay minerals and organic matter, with substantial accumulation of nC60 aggregates near the point of release.  相似文献   
102.
Limits and dynamics of methane oxidation in landfill cover soils   总被引:1,自引:0,他引:1  
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a significant difference between the observed soil CH4 oxidation at field sampled conditions compared to optimum conditions achieved through pre-incubation (60 days) in the presence of CH4 (50 ml l−1) and soil moisture optimization. This pre-incubation period normalized CH4 oxidation rates to within the same order of magnitude (112-644 μg CH4 g−1 day−1) for all the cover soils samples examined, as opposed to the four orders of magnitude variation in the soil CH4 oxidation rates without this pre-incubation (0.9-277 μg CH4 g−1 day−1).Using pre-incubated soils, a minimum soil moisture potential threshold for CH4 oxidation activity was estimated at 1500 kPa, which is the soil wilting point. From the laboratory incubations, 50% of the oxidation capacity was inhibited at soil moisture potential drier than 700 kPa and optimum oxidation activity was typical observed at 50 kPa, which is just slightly drier than field capacity (33 kPa). At the extreme temperatures for CH4 oxidation activity, this minimum moisture potential threshold decreased (300 kPa for temperatures <5 °C and 50 kPa for temperatures >40 °C), indicating the requirement for more easily available soil water. However, oxidation rates at these extreme temperatures were less than 10% of the rate observed at more optimum temperatures (∼30 °C). For temperatures from 5 to 40 °C, the rate of CH4 oxidation was not limited by moisture potentials between 0 (saturated) and 50 kPa. The use of soil moisture potential normalizes soil variability (e.g. soil texture and organic matter content) with respect to the effect of soil moisture on methanotroph activity. The results of this study indicate that the wilting point is the lower moisture threshold for CH4 oxidation activity and optimum moisture potential is close to field capacity.No inhibitory effects of elevated CO2 soil gas concentrations were observed on CH4 oxidation rates. However, significant differences were observed for diurnal temperature fluctuations compared to thermally equivalent daily isothermal incubations.  相似文献   
103.
104.
The pH of Salmonella pre-enrichment media can become acidic (pH 4.0–5.0) when feeds/ingredients are incubated for 24?h. Salmonella in feed that have been stressed by heat and desiccation exhibit different pH tolerances than non-stressed cultures. Acidic conditions can result in cell injury/death and affect biochemical pathways. In this study, eight serotypes of Salmonella were grown in sterile meat and bone meal that was subjected to desiccation and heat stress. Cultures of non-stressed and stressed isolates were subsequently exposed to acidic pH from 4.0 to 7.0 in 0.5?pH increments (3 replicates/pH increment) in citrate buffer. At 6 and 24?h, serial dilutions were plated in duplicate on XLT-4 (xylose lysine tergitol-4) agar. Four serotypes showed an impaired ability to decarboxylate lysine on XLT-4. This inability to decarboxylate lysine was dependent on isolate, stress status, and incubation time. When the isolates’ ability to decarboxylate lysine was examined using biochemical tests, cultures were found to be able to decarboxylate lysine with the exception of S. Infantis. This suggests that XLT-4 contains a biochemical stressor(s) which affects the rate of decarboxylation by these Salmonella. These results suggest that acidic conditions may influence the detection and confirmation of Salmonella in feed.  相似文献   
105.
In response to new coal combustion residuals (CCR) disposal regulations, many coal‐fired utilities have closed existing unlined surface impoundments (SIs) that were traditionally used for disposal of CCR. The two primary closure options are closure‐in‐place (CIP), which involves dewatering and capping, and closure‐by‐removal (CBR), which includes excavation, transportation, and disposal of the CCR into a lined landfill. This article provides a methodology and a case study of how green and sustainable remediation concepts, including accounting for the life cycle environmental footprints and the physical risks to workers and community members, can be incorporated into the closure decision‐making process. The environmental impacts, occupational risks, and traffic‐related fatalities and injuries to workers and community members were calculated and compared for closure alternatives at a hypothetical site. The results demonstrated that the adverse impacts of the CBR option were significantly greater than those of the CIP option with respect to the analyzed impact pathways.  相似文献   
106.
Sites with dense nonaqueous‐phase liquid (DNAPL) contamination present significant remediation challenges in terms of technical practicability and cost. Remedial approaches to DNAPL sites often follow a management approach rather than removal or eradication approaches, particularly due to the uncertainties associated with the benefits of partial source mass removal, as complete source removal is unlikely. Mass‐removal technologies should be evaluated for all DNAPL sites, although implementation of recovery technologies will be limited to a few sites based upon site‐specific factors. Sitewide remedial strategies that employ source reduction, where applicable, and incorporate associated risk‐reduction technologies, including monitored natural attenuation, are advised. Creosote DNAPL sites are particularly challenging, as they are predominantly composed of low‐solubility polycyclic aromatic hydrocarbons that form long‐term continuing sources. Additionally, the physical properties of creosote DNAPL, including high viscosity and relatively low density, result in significant migration potential and considerable dissolved‐phase groundwater impacts. An innovative creosote DNAPL source recovery well design was developed to achieve separate‐phase removal of pooled creosote DNAPL. The design presented herein employs modified circulation‐well technology to mobilize DNAPL to the engineered recovery well, where it is gravity‐settled into a sump to permit separate‐phase mass removal of the emplaced DNAPL source without groundwater production or treatment. A discharge mass flux protocol was developed to verify dissolved‐phase plume stability and the benefit of the source mass removal. © 2013 Wiley Periodicals, Inc.  相似文献   
107.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   
108.
The measurement of hydrochloric acid (HCl) on a continuous basis in coal-fired plants is expected to become more important if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration. For this study, the operational performance of three methods/instruments, including tunable diode laser absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and Fourier transform infrared (FTIR) spectroscopy, were evaluated over a range of real-world operating environments. Evaluations were done over an HCl concentration range of 0–25 ppmv and temperatures of 25, 100, and 185 °C. The average differences with respect to temperature were 3.0% for the TDL for values over 2.0 ppmv and 6.9% of all concentrations, 3.3% for the CRDS, and 4.5% for the FTIR. Interference tests for H2O, SO2, and CO, CO2, and NO for a range of concentrations typical of flue gases from coal-fired power plants did not show any strong interferences. The possible exception was an interference from H2O with the FTIR. The instrument average precision over the entire range was 4.4% for the TDL with better precision seen for concentrations levels of 2.0 ppmv and above, 2.5% for the CRDS, and 3.5% for the FTIR. The minimum detection limits were all on the order of 0.25 ppmv, or less, utilizing the TDL values with a 5-m path. Zero drift was found to be 1.48% for the TDL, 0.88% for the CRDS, and 1.28% for the FTIR.

Implications: This study provides an evaluation of the operational performance of three methods/instruments, including TDL absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and FTIR spectroscopy, for the measurement of hydrochloric acid (HCl) over a range of real-world operating environments. The results showed good instrument accuracy as a function of temperature and no strong interferences for flue gases typical to coal-fired power plants. The results show that these instruments would be viable for the measurement of HCl in coal-fired plants if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration.  相似文献   

109.
Greenhouse gas emissions assessments for site cleanups typically quantify emissions associated with remediation and not those from contaminant biodegradation. Yet, at petroleum spill sites, these emissions can be significant, and some remedial actions can decrease this additional component of the environmental footprint. This article demonstrates an emissions assessment for a hypothetical site, using the following technologies as examples: excavation with disposal to a landfill, light nonaqueous‐phase liquid (LNAPL) recovery with and without recovered product recycling, passive bioventing, and monitored natural attenuation (MNA). While the emissions associated with remediation for LNAPL recovery are greater than the other considered alternatives, this technology is comparable to excavation when a credit associated with product recycling is counted. Passive bioventing, a green remedial alternative, has greater remedial emissions than MNA, but unlike MNA can decrease contaminant‐related emissions by converting subsurface methane to carbon dioxide. For the presented example, passive bioventing has the lowest total emissions of all technologies considered. This illustrates the value in estimating both remediation and contaminant respiration emissions for petroleum spill sites, so that the benefit of green remedial approaches can be quantified at the remedial alternatives selection stage rather than simply as best management practices. ©2015 Wiley Periodicals, Inc.  相似文献   
110.
Detecting Temporal Change in Watershed Nutrient Yields   总被引:2,自引:1,他引:1  
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-cover change, watershed nutrient yields vary from one year to the next due to many exogenous factors. The interacting effects of land cover and exogenous factors suggest nutrient yields should be treated as distributions, and the effect of land-cover change should be examined by looking for significant changes in the distributions. We compiled nutrient yield distributions from published data. The published data included watersheds with homogeneous land cover that typically reported two or more years of annual nutrient yields for the same watershed. These data were used to construct statistical models, and the models were used to estimate changes in the nutrient yield distributions as a result of land-cover change. Land-cover changes were derived from the National Land Cover Database (NLCD). Total nitrogen (TN) yield distributions increased significantly for 35 of 1550 watersheds and decreased significantly for 51. Total phosphorus (TP) yield distributions increased significantly for 142 watersheds and decreased significantly for 17. The amount of land-cover change required to produce significant shifts in nutrient yield distributions was not constant. Small land-cover changes led to significant shifts in nutrient yield distributions when watersheds were dominated by natural vegetation, whereas much larger land-cover changes were needed to produce significant shifts when watersheds were dominated by urban or agriculture. We discuss our results in the context of the Clean Water Act.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号