Three-dimensional (3D) models are often utilised to assess the presence of sand and gravel deposits. Expanding these models to provide a better indication of the suitability of the deposit as aggregate for use in construction would be advantageous. This, however, leads to statistical challenges. To be effective, models must be able to reflect the interdependencies between different criteria (e.g. depth to deposit, thickness of deposit, ratio of mineral to waste, proportion of ‘fines’) as well as the inherent uncertainty introduced because models are derived from a limited set of boreholes in a study region. Using legacy borehole data collected during a systematic survey of sand and gravel deposits in the UK, we have developed a 3D model for a 2400 km2 region close to Reading, southern England. In developing the model, we have reassessed the borehole grading data to reflect modern extraction criteria and explored the most suitable statistical modelling technique. The additive log-ratio transform and the linear model of coregionalization have been applied, techniques that have been previously used to map soil texture classes in two dimensions, to assess the quality of sand and gravel deposits in the area. The application of these statistical techniques leads to a model which can be used to generate thousands of plausible realisations of the deposit which fully reflect the extent of model uncertainty. The approach offers potential to improve regional-scale mineral planning by providing an enhanced understanding of sand and gravel deposits and the extent to which they meet current extraction criteria.
Thermotolerant coliform (TC) loadings were quantified for 49 catchments draining into the North and South Bays of Santa Catarina (SC, southeastern Brazil), an area known for its tourism and aquaculture. TC loadings were calculated based on flow measurements taken in 26 rivers. TC concentrations ere quantified based on surface water samples collected at 49 catchment outlets in 2012 and 2013. Median TC loads ranged from 3.7 × 103 to 6.8 × 108 MPN s?1. TC loadings in the catchments increased in proportion to increases in resident human population, population density and percentage of urbanised area. Catchments with more than 60% of area covered by wastewater collection and treatment systems had higher TC loads per person than catchments with less than 25%. Based on the study catchments, these results indicate that current sewerage infrastructure is ineffective in reducing contamination of faecal origin to surface waters. These findings have important implications for the management of microbiological health hazards in bathing, recreational and shellfish aquaculture waters in the North and South Bays of Santa Catarina Island. 相似文献
Wybong Creek discharges salts into the agriculturally and industrially important Hunter River in New South Wales, Australia. Abrupt increases in salinity occur periodically in the mid-Wybong Creek catchment. In order to understand the processes which cause these abrupt increases, changes in surface and groundwater were investigated. It is shown that salinity increases can be attributed to highly discrete groundwater discharge directly into the river from below. Hourly electrical conductivity data measured in the river showed regular, diurnal electrical conductivity fluctuations of up to 350 μS cm?1. These fluctuations could not be attributed to barometric pressure, temperature, or evapotranspiration. Instead, a similar periodicity in surface water electrical conductivity and groundwater height in nearby groundwater wells was found. Fluctuations were of similar periodicity to the orthotides which cause fluctuations in surface water height and are induced by Earth tides. The geology in the mid-catchment area indicates conditions are optimal for Earth tides to impact groundwater. The reporting of orthotidal changes in water chemistry in this article is believed to be the first of its kind in the scientific literature, with the large fluctuations noted having important implications for water monitoring and management in the catchment. Further research investigating Earth-tide-induced phases of groundwater heights will better constrain the relationships between surface water chemistry and groundwater height. 相似文献
The growing population number and traffic loads, increasing environmental pressures, agricultural intensification, and the establishment of Mount Cameroon National Park demand farsighted environmental management in the region and the definition of a favorable ecological status. Since plants grow in the interface between soils and the atmosphere they can be used as passive biomonitors for the environmental quality. At the same time, the accumulation of nutrients and pollutants in crops is linked to human health, so that foliar elemental levels can be used as an integrative measure for environmental pollution and impact assessment. In the present study, we collected leaf samples of plantain, cassava, cocoyam, and maize on 28 sites at the southern flanks of Mt. Cameroon and determined 20 chemical elements. Air pollution in the study area comes from biomass and waste burning mainly, but emissions from traffic and a large refinery were believed to also play a significant role. However, spatial patterns in foliar elemental concentrations reflected the geochemistry rather than specific sources of pollution. Significant differences in foliar metal and nutrient levels were observed between the four species, indicating a different demand and uptake of specific elements. The results were compared to published data on nutrient concentrations in the tested species and the so-called reference plant. The data can be used as a baseline for future studies in plant nutrition and the environmental monitoring in inner tropical regions where these crops are grown. 相似文献
The relative grazing impact of Noctiluca scintillans (hereafter referred only Noctiluca) and copepods (Acrocalanus gracilis, Paracalanus parvus, Acartia danae and Oithona similis) on the phytoplankton community in an upwelling–mudbank environment along the southwest coast India is presented here. This study was carried out during the Pre-Southwest Monsoon (April–May) to the Late Southwest Monsoon (August) period in 2014. During the sampling period, large hydrographical transformation was evident in the study area (off Alappuzha, Southwest coast of India); warmer Pre-Southwest Monsoon water column condition got transformed into cooler and nitrate-rich hypoxic waters during the Southwest Monsoon (June–August) due to intense coastal upwelling. Copepods were present in the study area throughout the sampling period with a noticeable increase in their abundance during the Southwest Monsoon. On the other hand, the first appearance of Noctiluca in the sampling location was during the Early Southwest Monsoon (mid-June) and thereafter their abundance increased towards the Peak Southwest Monsoon. The grazing experiments carried out as per the food removal method showed noticeable differences in the feeding preferences of Noctiluca and copepods, especially on the different size fractions of phytoplankton. Noctiluca showed the highest positive electivity for the phytoplankton micro-fraction (av. 0.49 ± 0.04), followed by nano-fraction (av. 0.17 ± 0.04) and a negative electivity for the pico-fraction (av. ?0.66 ± 0.06). In total ingestion of Noctiluca, micro-fraction contribution (83.7%) was significantly higher compared to the nano- (15.7%) and pico-fractions (0.58%). On the other hand, copepods showed the highest positive electivity for the phytoplankton nano-fraction (av. 0.38 ± 0.04) followed by micro- (av. -0.17 ± 0.05) and pico-fractions (av. ?0.35 ± 0.05). Similarly, in total ingestion of copepods, nano-fraction (69.7%) was the highest followed by micro- (28.9%) and pico-fractions (1.37%). The grazing pressure of Noctiluca on the total phytoplankton was found to be 27.7% of the standing stock and 45.6% of the production, whereas in the case of copepods, it was 9.95% of the standing stock and 16.6% of the production. The study showed that the grazing pressure of Noctiluca on the total phytoplankton as well as larger phytoplankton fraction was 2.8- and 8-folds higher than that of the copepods. This suggests the leading role of Noctiluca as an effective grazer of larger phytoplankton along the southwest west coast of India, especially during the Peak/Late Southwest Monsoon. 相似文献