首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   13篇
  国内免费   91篇
安全科学   27篇
废物处理   23篇
环保管理   34篇
综合类   140篇
基础理论   68篇
环境理论   1篇
污染及防治   122篇
评价与监测   24篇
社会与环境   8篇
灾害及防治   11篇
  2023年   7篇
  2022年   23篇
  2021年   13篇
  2020年   10篇
  2019年   14篇
  2018年   17篇
  2017年   15篇
  2016年   19篇
  2015年   19篇
  2014年   28篇
  2013年   36篇
  2012年   33篇
  2011年   28篇
  2010年   18篇
  2009年   20篇
  2008年   23篇
  2007年   18篇
  2006年   17篇
  2005年   13篇
  2004年   15篇
  2003年   10篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有458条查询结果,搜索用时 15 毫秒
441.
畜禽养殖场臭气成分复杂,完全去除较为困难。生物法是目前应用较广泛的脱臭方法,其中能否将生物膜附着在填料上是影响生物法去除恶臭气体效率的重要因素。本实验采用定时定量投加Na2S的方式驯化活性污泥,并选用MLSS浓度和SO42-浓度增量变化2个指标作为污泥驯化成熟的指标,比传统的以MLSS作为污泥驯化成熟的指标更准确。采用循环污泥的挂膜方式,运行2 d后,通入新鲜的空气和H2S气体,2周后反应器启动成功。  相似文献   
442.
喷嘴角度对脱硫塔内气液两相流场的影响   总被引:1,自引:0,他引:1  
提出了采用数值模拟的方法研究喷嘴角度对脱硫塔内部气液两相流场的影响。由于实际脱硫塔尺寸庞大,给实验研究带来困难且成本很高,在数值模拟平台上,分别模拟了45°、75°和-30°3种喷嘴角度布置下脱硫塔内部速度场、温度场变化以及湍流强度的分布情况。结果表明,在角度为-30°布置时速度场变化不是很剧烈,脱硫塔进出口温差比较理想,湍流强度在脱硫塔底部较大随着塔高的增加缓慢降低,这样有助于气液两相均匀混合,并控制出口烟温,有利于提高脱硫效率。  相似文献   
443.

Purpose

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have emerged as contaminants of environmental concerns because they pose potential risks to human and animal health. The purpose of this study was to investigate the in vitro metabolism of OH-PBDEs and their potential inhibition against 17??-estradiol (E2) metabolism.

Methods

Rat liver microsomes were used as a source of P450 enzymes in an in vitro metabolism study of OH-PBDEs. Inhibition of E2 metabolism and kinetic study were performed by incubating with rat liver microsomes in the presence of OH-PBDEs.

Results

The obtained data clearly demonstrated that OH-PBDEs, especially those congeners with lower bromination, could be metabolized to bromophenol and diOH-PBDEs. The less metabolic rate of OH-PBDEs was observed with the increasing number of bromine substituents. OH-PBDEs with hydroxyl group and bromine adjacent to the ether bridge showed faster metabolic rates. In addition, the results showed non-competitive inhibition of E2 metabolism by OH-PBDEs with IC50 values in the range from 13.7 to 55.2???M. The most potent OH-PBDE inhibitor was found to be 3??-OH-BDE-100. The inhibitory potencies for OH-PBDEs were significantly higher than those of parent PBDE and methoxylated metabolites, providing the evidence that PBDEs exerted estrogenic activity in part by their hydroxylated metabolites.

Conclusions

OH-PBDEs exhibited large differences in their capacity to be metabolized and to inhibit E2 metabolism in rat liver microsomes. The finding might increase our understanding of healthy risk associated with PBDEs in human and wildlife.  相似文献   
444.
Huang DL  Zeng GM  Feng CL  Hu S  Zhao MH  Lai C  Zhang Y  Jiang XY  Liu HL 《Chemosphere》2010,81(9):1091-1097
Lignocellulosic biomass is an abundant renewable resource difficult to degrade. Its bioconversion plays important roles in carbon cycles in nature, which may be influenced by heavy metals in environment. Mycelial growth and the degradation of lignocellulosic waste by lignin-degrading fungus Phanerochaete chrysosporium under lead stress were studied. It was shown that P. chrysosporium could grow in liquid media with 400 mg L?1 Pb(II), and mycelial dry weight was reduced by 54% compared to the control. Yellow mycelia in irregular short-strip shape formed in Pb-containing media, whereas the control showed ivory-white regular mycelial pellets. Two possible responses to Pb stress were: dense hyphae, and secretion from mycelia to resist Pb. During solid-state fermentation of straw, fungal colonization capability under Pb stress was positively correlated with the removal efficiency of soluble-exchangeable Pb when its content was higher than 8.2 mg kg?1 dry mass. Carboxymethyl cellulase activity and cellulose degradation were inhibited at different Pb concentrations, whereas low Pb concentrations increased xylanase and ligninolytic enzyme activities and the hemicellulose and lignin degradation. Cluster analyses indicated that Pb had similar effects on the different microbial indexes related to lignin and hemicellulose degradation. The present findings will advance the understandings of lignocellulose degradation by fungi under Pb pollution, which could provide useful references for developing metal-polluted waste biotreatment technology.  相似文献   
445.
Environmental Science and Pollution Research - While local protectionism and market segmentation owing to fiscal decentralization are not conducive to broad economic development, they may be...  相似文献   
446.
The degradation of 3,3′-iminobis-propanenitrile was investigated using the Fe0/GAC micro-electrolysis system. Effects of influent pH value, Fe0/GAC ratio and granular activated carbon (GAC) adsorption on the removal efficiency of the pollutant were studied in the Fe0/GAC micro-electrolysis system. The degradation of 3,3′-iminobis-propanenitrile was affected by influent pH, and a decrease of the influent pH values from 8.0 to 4.0 led to the increase of degradation efficiency. Granular activated carbon was added as cathode to form macroscopic galvanic cells between Fe0 and GAC and enhance the current efficiency of the Fe0/GAC micro-electrolysis system. The GAC could only adsorb the pollutant and provide buffer capacity for the Fe0/GAC micro-electrolysis system, and the macroscopic galvanic cells of the Fe0/GAC micro-electrolysis system played a leading role in degradation of 3,3′-iminobis-propanenitrile. With the analysis of the degradation products with GC–MS, possible reaction pathway for the degradation of 3,3′-iminobis-propanenitrile by the Fe0/GAC micro-electrolysis system was suggested.  相似文献   
447.
"绿色经济与可持续发展"是当今人类社会的主题,而任何一种可持续发展的主体都离不开城市。因此,推动城市发展模式向绿色生态城的转变已成为必然趋势。本文以建设绿色生态城为例,主要阐述推进绿色生态城建设的重要意义。同时,重点分析目前国内绿色生态城建设过程中存在的主要问题。最后,对破解绿色瓶颈,推进绿色生态城的建设提出几点建议。  相似文献   
448.
To date, no ligand binding assay has been described for the carbamate herbicide asulam, although a variety of physical methods, dependent on pre-concentration of water samples, have been documented for its assessment. However, asulam is increasingly used in sensitive agricultural areas, and statutory regulations concerning its monitoring will undoubtedly become more stringent. Antibodies are optimal partners in ligand binding assays, but it is commonly understood by immunological researchers that where no antibody reactive with a particular antigen has yet been described, the immunogenicity of the antigen may be particularly restricted. By the expedient of employing a specialised approach to final immunisation with an asulam-protein conjugate, prior to the immortalisation of a specific anti-asulam antibody-producing cell, we have succeeded in generating a monoclonal antibody reactive specifically with asulam that can be configured in a convenient immunoassay. This antibody may be used flexibly in a number of ways: small sample volumes of 10 microl can be assessed to sensitivities of 4.35 x 10(-7) M (10 microg L(-1)) while avoiding discrepancies contributed by the assay matrix; this antibody-based assay can also be formatted to deliver sensitivities at levels stipulated by regulatory authorities (e.g., 4.35 x 10(-9) M or 0.1 microg L(-1)) directly from a water sample, without prior pre-concentration.  相似文献   
449.
Herein, a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots (MSQDs) and 3D honeycomb-like conjugated triazine polymers (CTP) (namely, CTP-MSQD). The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property, while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators. The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI) reduction and H2 evolution, featured a rate of 0.069 min−1 and 1070 µmol/(hr∙g), respectively, which were 8 times than those of pure 3D-CTP (0.009 min−1 and 129 µmol/(hr∙g)). We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号