首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   4篇
  国内免费   7篇
安全科学   5篇
废物处理   20篇
环保管理   29篇
综合类   31篇
基础理论   36篇
环境理论   1篇
污染及防治   86篇
评价与监测   26篇
社会与环境   10篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   12篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   13篇
  2013年   22篇
  2012年   16篇
  2011年   15篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   9篇
  2006年   13篇
  2005年   16篇
  2004年   9篇
  2003年   7篇
  2002年   10篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1970年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
131.
This paper describes the application of magnetoelastic sensors for quantifying the size and deposition rate of sediment samples in costal areas, lakes, and rivers. The magnetoelastic sensor, which is made of inexpensive amorphous ferromagnetic alloy, measures parameters of interest by tracking the changes in its resonant frequency and/or amplitude. Since an increase in mass loading on the sensor surface changes its resonant frequency and amplitude, the deposition rate of sediment particles can be determined in real time by tracking these two quantities. Based on a theoretical model, the size distribution of the sediment particles was also estimated from the deposition rate.  相似文献   
132.
Transport impacts on atmosphere and climate: Aviation   总被引:1,自引:0,他引:1  
Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion. The last major international assessment of these impacts was made by the Intergovernmental Panel on Climate Change (IPCC) in 1999. Here, a comprehensive updated assessment of aviation is provided. Scientific advances since the 1999 assessment have reduced key uncertainties, sharpening the quantitative evaluation, yet the basic conclusions remain the same. The climate impact of aviation is driven by long-term impacts from CO2 emissions and shorter-term impacts from non-CO2 emissions and effects, which include the emissions of water vapour, particles and nitrogen oxides (NOx). The present-day radiative forcing from aviation (2005) is estimated to be 55 mW m?2 (excluding cirrus cloud enhancement), which represents some 3.5% (range 1.3–10%, 90% likelihood range) of current anthropogenic forcing, or 78 mW m?2 including cirrus cloud enhancement, representing 4.9% of current forcing (range 2–14%, 90% likelihood range). According to two SRES-compatible scenarios, future forcings may increase by factors of 3–4 over 2000 levels, in 2050. The effects of aviation emissions of CO2 on global mean surface temperature last for many hundreds of years (in common with other sources), whilst its non-CO2 effects on temperature last for decades. Much progress has been made in the last ten years on characterizing emissions, although major uncertainties remain over the nature of particles. Emissions of NOx result in production of ozone, a climate warming gas, and the reduction of ambient methane (a cooling effect) although the overall balance is warming, based upon current understanding. These NOx emissions from current subsonic aviation do not appear to deplete stratospheric ozone. Despite the progress made on modelling aviation's impacts on tropospheric chemistry, there remains a significant spread in model results. The knowledge of aviation's impacts on cloudiness has also improved: a limited number of studies have demonstrated an increase in cirrus cloud attributable to aviation although the magnitude varies: however, these trend analyses may be impacted by satellite artefacts. The effect of aviation particles on clouds (with and without contrails) may give rise to either a positive forcing or a negative forcing: the modelling and the underlying processes are highly uncertain, although the overall effect of contrails and enhanced cloudiness is considered to be a positive forcing and could be substantial, compared with other effects. The debate over quantification of aviation impacts has also progressed towards studying potential mitigation and the technological and atmospheric tradeoffs. Current studies are still relatively immature and more work is required to determine optimal technological development paths, which is an aspect that atmospheric science has much to contribute. In terms of alternative fuels, liquid hydrogen represents a possibility and may reduce some of aviation's impacts on climate if the fuel is produced in a carbon-neutral way: such fuel is unlikely to be utilized until a ‘hydrogen economy’ develops. The introduction of biofuels as a means of reducing CO2 impacts represents a future possibility. However, even over and above land-use concerns and greenhouse gas budget issues, aviation fuels require strict adherence to safety standards and thus require extra processing compared with biofuels destined for other sectors, where the uptake of such fuel may be more beneficial in the first instance.  相似文献   
133.
Secondary organic aerosol (SOA) formation is enhanced on acidic seed particles; SOA also forms during cloud processing reactions where acidic sulfate is prevalent. Recently several studies have focused on the identification of organosulfates in atmospheric aerosols or smog chamber experiments, and upon the mechanism of formation for these products. We identify several organosulfate products formed during the laboratory OH radical oxidation of dilute aqueous glycolaldehyde in the presence of sulfuric acid. We propose a radical–radical reaction mechanism as being consistent with formation of these products under our experimental conditions. Using a kinetics model we estimate that organosulfates account for less than 1% of organic matter formed from these precursors during cloud processing. However, in wet acidic aerosols, where precursors are highly concentrated and acidic sulfate makes up close to half of the aerosol mass, this radical–radical reaction could account for significant organosulfate production.  相似文献   
134.
The synthesis of distributed wastewater treatment plants (WTPs) has been studied to reduce capital and operating costs associated with wastewater treatment. In this study, the environmental and economic feasibility of a total wastewater treatment network system (TWTNS) including distributed and terminal WTPs was estimated using life cycle assessment (LCA) and life cycle costing (LCC) methods. Wastewater sources and existing distributed and terminal WTPs in an iron and steel plant were networked. The TWTNS was generated from the optimal solution to a mathematical optimization model and compared to a conventional wastewater treatment system (CWTS). The environmental effect scores of the TWTNS were from 29.6% to 68.3% higher than those of the CWTS because of higher electricity consumption required to pump wastewater to the networked WTPs. However, the life cycle cost of the TWTNS was lower than that of the CWTS by 10.1% because of the decrease of the labor cost resulting from the closing of three distributed WTPs. Overall, the TWTNS was no more eco-efficient than the CWTS because the increase of environmental burdens outweighed the decrease of economic costs.  相似文献   
135.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   
136.
Environmental Chemistry Letters - Bisenols and its derivatives are attractive heterocyclic compounds exhibiting a wide range of biological properties, including anticancer, antipyretic and...  相似文献   
137.
Lim TB  Xu R  Tan B  Obbard JP 《Chemosphere》2006,64(4):596-602
Moss samples were collected from the island of Singapore and analysed for a range of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Although all compounds analysed have been banned from use in Singapore, they were detected in all samples collected. Among the hexachlorocyclohexanes (HCH), beta-HCH was the most dominant isomer, while trans-chlorane was found to be the most dominant cyclodiene pesticide. High levels (79.12 ng g(-1)) of PCBs were detected in mosses collected from a nearby island due to active accumulation of pollutants associated with boat emissions. Significant spatial variations in the levels of organic pollutants in Singapore were largely absent, indicating that air masses moving over the island deposit OCPs and PCBs in a uniform pattern. A comparison of moss pollutant levels with available data from Czech Republic showed that dichlorodiphenyldichloroethylene (p,p'-DDE), dichlorodiphenyltrichloroethane (p,p'-DDT) and PCB levels in Singapore are the highest. The presence of these compounds suggests that they are still used in the region and are environmentally recalcitrant.  相似文献   
138.
139.
Urban water planning and policy have been focusing on environmentally benign and economically viable water management. The objective of this study is to develop a mathematical model to integrate and optimize urban water infrastructures for supply-side planning and policy: freshwater resources and treated wastewater are allocated to various water demand categories in order to reduce contaminants in the influents supplied for drinking water, and to reduce consumption of the water resources imported from the regions beyond a city boundary. A case study is performed to validate the proposed model. An optimal urban water system of a metropolitan city is calculated on the basis of the model and compared to the existing water system. The integration and optimization decrease (i) average concentrations of the influents supplied for drinking water, which can improve human health and hygiene; (ii) total consumption of water resources, as well as electricity, reducing overall environmental impacts; (iii) life cycle cost; and (iv) water resource dependency on other regions, improving regional water security. This model contributes to sustainable urban water planning and policy.  相似文献   
140.
Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O2/LR-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号