In this paper, continuous production of hydrogen through fermentation with liquid swine manure as substrate was researched using a semi-continuously fed fermenter (8 L in total volume and 4 L in working volume). The pH and temperature for the fermenter were controlled at 5.3 +/- 0.1 and 35 +/- 1 degrees C, respectively, throughout the experiment. Three hydraulic retention times (16, 20, and 24 h) were investigated for their impact on the efficiency and performance of the fermenter in terms of hydrogen yields. The results indicate that hydraulic retention time (HRT) has a strong influence on the fermenter performance. An increasing HRT would increase the variation in hydrogen concentration in the offgas. To produce hydrogen with a fairly consistent concentration, the HRT of the fermenter should not exceed 16 h, which, however, did not appear to be short enough to control methanogenesis because the offgas still contained about 5% methane. When methane content in the offgas exceeded 2%, an inverse linear relationship between hydrogen and methane was observed with a correlation coefficient of 0.9699. To increase hydrogen content in the offgas, methane production has to be limited to below 2%. Also, keeping oxygen content in the fermenter below 1.5% would increase the hydrogen concentration to over 15%. The product to substrate ratio was found to be around 50% for the fermenter system studied, evidenced by the observation that for every 6 liters of manure fermented, 3 liters of pure hydrogen were produced, which was significant and encouraging. 相似文献
The concept of sustainable development has experienced great development and change at different levels of theoretical connotation and practical implementation since 1960s and 1970s when it was first proposed. People’s understanding of the relationship between economy, society, and environment has been continuously deepened over the years. When it came to the end of 2015, it is necessary to examine the results of the United Nations Millennium Development Goals on sustainable development, and at the same time, the post-2015 framework and guidance on sustainable development at the global level were to be made, including the ideas, action plans, key areas that would guide the global sustainable development. The 2030 Agenda for Sustainable Development has developed a 5P theoretical framework of being people-centered, global environmental security, sustained economic prosperity, social justice and harmony and partnership promotion, including a political declaration, 17 overarching goals and 169 specific targets, specific ways of implementation, as well as the follow-up. It is the road map to achieve global sustainable development and meet the requirements of the millennium development goals. This paper summarizes the understanding of the concept of sustainable development from its origin, its significant development, to the proposition and development of the 2030 Agenda for Sustainable Development, and its strategic impact on China. 相似文献
In order to efficiently remove volatile organic compounds (VOCs) from indoor air, onedimensional titanate nanotubes (TiNTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Comparedwith the strong and corrosive inorganic acids, CH3COOH was not only safer andmore environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. Itwasobserved that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene (94%), exceeding that of P25 (44%) by a factor ofmore than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity (20%-80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant tomoisture than the other TiO2 nanocrystals and P25. 相似文献
Environmental Science and Pollution Research - Microbial sulfate reduction, a vital mechanism for microorganisms living in anaerobic, sulfate-rich environments, is an essential aspect of the sulfur... 相似文献
The disposal of organic waste by the biocomposting of black soldier fly larvae (BSFL) has drawn broad attention. However, the discrepancies in heavy metal immobilization between BSFL biocomposting with different inoculation densities and aerobic composting need to be further researched. In this study, BSFL with inoculation densities of 0.08%, 0.24% and 0.40% was added to swine manure to investigate its influence on heavy metal bioaccumulation and bioavailability. The physicochemical properties, BSFL growth performance and amino acid contents were measured. The results showed that the germination index, total prepupal yield and bioavailable fraction removal rate (%) of Cr and Pb at an inoculation density of 0.40% of BSFL were the highest among all of the BSFL biocomposting groups. Although the bioaccumulation factor and heavy metal (Cd, Cr, Cu and Zn) concentrations of the BSFL body from swine manure with inoculation densities of 0.24% and 0.40% of BSFL were similar, the BSFL inoculation density of 0.40% had the best absorption effect on these heavy metals in terms of total prepupal yield. Therefore, this study provides a basis for exploring the optimal inoculation density of BSFL biocomposting to reduce the harmful effects of heavy metals in swine manure.
Environmental Science and Pollution Research - Biological treatment in wastewater treatment plants releases high amounts of pathogenic bioaerosols. Quantitative microbial risk assessment is a... 相似文献