首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   2篇
废物处理   5篇
环保管理   10篇
综合类   5篇
基础理论   9篇
污染及防治   28篇
评价与监测   1篇
社会与环境   3篇
灾害及防治   1篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1988年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
21.
The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.  相似文献   
22.
Abstract

On-road mobile sources contribute substantially to ambient air concentrations of the carcinogens 1,3-butadiene, benzene, and polycyclic aromatic hydrocarbons (PAHs). The current study measured benzene and 1,3-butadiene at the Baltimore Harbor Tunnel tollbooth over 3-hr intervals on seven weekdays (n = 56). Particle-bound PAH was measured on a subset of three days. The 3-hr outdoor 1,3-butadiene levels varied according to time of day and traffic volume. The minimum occurred at night (12 a.m.–3 a.m.) with a mean of 2 µg/m3 (SD = 1.3, n = 7), while the maximum occurred during the morning rush hour (6 a.m.–9 a.m.) with a mean of 11.9 µg/m3 (SD = 4.6, n = 7). The corresponding traffic counts were 1413 (SD = 144) and 16,893 (SD = 692), respectively. During the same intervals, mean benzene concentration varied from 3 µg/m3 (SD = 3.1, n = 7) to 22.3 µg/m3 (SD = 7.6, n = 7). Median PAH concentrations ranged from 9 to 199 ng/m3. Using multivariate regression, a significant association (p < 0.001) between traffic and curbside concentration was observed. Much of the pollutant variability (1,3-butadiene 62%, benzene 77%, and PAH 85%) was explained by traffic volume, class, and meteorology. Results suggest >2-axle vehicles emit 60, 32, and 9 times more PAH, 1,3-butadiene, and benzene, respectively, than do 2-axle vehicles. This study provides a model for estimating curbside pollution levels associated with traffic that may be relevant to exposures in the urban environment.  相似文献   
23.
Karanja oil, containing 6.2% free fatty acids (FFAs), was considered for biodiesel production using a single-step solid-phase acid catalyzed process. Different types of zeolites and Amberlyst15 catalysts were tested and biodiesel was produced. Under similar conditions, the highest biodiesel yield was achieved using an Amberlyst15 catalyst, which contained 3–5% of moisture. The effects of operating parameters of the reaction such as reaction temperature, catalyst amount, and methanol-to-oil ratio were studied. An increase of methanol:oil ratio revealed a non-monotonic increase in biodiesel yields. Similar non-monotonic behavior was observed when Jatropha oil was used. Leaching and catalyst reusability were also considered. No significant effects of leaching were observed and catalyst reusability appeared to be affected by methanol interactions. The presence of a co-solvent, Tetrahydrofuran (THF), increased the biodiesel yield. Furthermore, an optimum amount of THF (THF:methanol volume ratio of 1:2) gave rise to the highest biodiesel yield. A biodiesel yield of 93% was achieved at 120 °C using a single-step process with Amberlyst15 as a catalyst, THF as a co-solvent, and a methanol:oil ratio of 30:1.  相似文献   
24.
The increasing demand on energy due to population growth and rising of living standards has led to considerable use of fossil fuels which has in turn, had an adverse impact on environmental pollution and depletion of fossil fuels in Internal Combustion (IC) engine sector. Alternative fuel blend evaluation in IC engine fuel technologies is a very important strategic decision involving decisions balancing within a number of criteria and opinions from different decision maker of IC engine experts. The selection of appropriate source of biodiesel and proper blending of biodiesel plays a major role in alternate energy production. This paper describes an application of hybrid Multi Criteria Decision Making (MCDM) technique for the selection of optimum biodiesel blend in the IC engine. The proposed model, Analytical Network Process (ANP) is integrated with Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) to evaluate the optimum blend. Here the ANP is used to determine the relative weights of the criteria, whereas TOPSIS is used for obtaining the final ranking of alternative blends. An efficient pair-wise comparison process and ranking of alternatives can be achieved for optimum blend selection through the integration of ANP and TOPSIS. The obtained preference order for the blends are as B20 > B40 > Diesel > B60 > B80 > B100. This paper highlights a new insight into MCDM techniques to evaluate the best fuel blend for the decision makers such as engine manufactures and R&D engineers to meet the fuel economy and emission norms to empower the green revolution.  相似文献   
25.
26.
Journal of Polymers and the Environment - Poly(ethylene terephthalate) (PET) is one of the most consumed polymers because of its excellent thermal and mechanical properties. By increasing in PET...  相似文献   
27.
28.
The effect of 'safe application rate (SAR)' concentrations of the insecticides fenitrothion 50% EC (an organophosphate) and carbofuran 3% G (a carbamate) on histopathological changes in the thyroid gland have been studied during chronic exposure for 120 days (mid-April to mid-August). The studies reveal significant declines in the diameters of the follicle and the colloid of the thyroid, but a significant increase in the height of the epithelium, following exposure to both fenitrothion or carbofuran. In the fenitrothion treatment, invasion by blood corpuscles into the follicular lumen, following breakdown of the epithelium, was also observed. The degeneration of the epithelium and the loss of colloid in the follicles suggest that the fenitrothion treatment is more severe than the carbofuran treatment.  相似文献   
29.
The present study was designed to screen 20 fungi for their potential to degrade the chlorinated organic pesticides endosulfan and chlorpyrifos. Fungi were first screened for their tolerance to various concentrations of target pesticides using soil extract agar and subsequent degradation studies were performed in soil extract broth containing 25 mg/L of the individual pesticide. Pesticide degradation was evaluated using gas chromatography. Other parameters, such as pH and mycelial weight, were also determined. Based on percent growth inhibition of test fungi and subsequent analysis of EC50 values, the overall results revealed that chlorpyrifos showed significantly more growth inhibition in all tested fungi compared with endosulfan. Trametes hirsuta showed complete degradation of both α‐ and β‐endosulfan isomers and Cladosporium cladosporioides displayed maximum degradation of chlorpyrifos. All test fungi degraded endosulfan more efficiently than chlorpyrifos, except Phanerochaete chrysosporium, Trichoderma harzianum, and Trichoderma virens which showed higher degradation of chlorpyrifos than endosulfan. It was also found that all tested fungi degraded α‐endosulfan more efficiently than β‐endosulfan. Endosulfan sulfate was found to be the major degradation product with all tested fungi. Fungi which showed more endosulfan degradation also produced more endosulfan sulfate. However, less endosulfan sulfate was detected with T. hirsuta and Trametes versicolor, although they degraded endosulfan more efficiently.  相似文献   
30.
This study assesses the factors affecting the adoption of laser land leveling (LLL) and its impact on crop yields and net returns. It uses household survey data collected from 621 randomly selected farmers in Karnal District of Haryana, India, and applies endogenous switching regression models. Unbiased model results show that the adoption of LLL has significant positive impacts on yields (rice +549 kg ha−1; wheat +471 kg ha−1) and net returns (an aggregate increase of US$230/ha) in the rice-wheat production system, thereby raising farmers' income substantially. Our results show that LLL adoption at the farm level is influenced by land size and quality, tenure system, availability of farm machinery (tractor), access to finance and farm cooperatives, gender of household head, level of education and training and access to extension services. Therefore, LLL scaling strategies need to consider these bio-physical and socio-economic parameters to reach adoption at scale and generate large social, economic, and environmental benefits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号