首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   2篇
废物处理   5篇
环保管理   10篇
综合类   5篇
基础理论   9篇
污染及防治   28篇
评价与监测   1篇
社会与环境   3篇
灾害及防治   1篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1988年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
41.
This paper summarizes the results of a yearlong continuous measurements of gaseous pollutants, NO, NO2, NOx and O3 in the ambient air at Kathmandu valley. Measured concentration of the pollutants in study area is a function of time. NO, NO2 and O3 peak occurred in succession in presence of sunlight. At the time of maximum O3 concentration most of the NOx are utilized. The diurnal cycle of ground level ozone concentrations, revealed mid-day peak with lower nocturnal concentrations and inverse relationship exists between O3 and NOx, which are evidences of photochemical O3 formation. The observed ground level ozone during monsoon is slight lower than the pre-monsoon value. Further, lack of rainfall and higher temperature, solar radiation in the pre-monsoon have given rise to the gradual build up of ozone and it is lowest during winter. Ground level ozone concentrations measured during bandha (general strike) and weekend are 19% and 13% higher than those measured during weekdays. The most effective ozone abatement strategy for Kathmandu Valley may be control of NOx emissions.  相似文献   
42.
The Coordinating Research Council held its thirteenth Vehicle Emissions Workshop in April 2003, when results of the most recent on-road vehicle emissions research were presented. Ongoing work from researchers who are engaged in improving understanding of the contribution of mobile sources to ambient air quality and emission inventories is summarized here. Participants in the workshop discussed efforts to improve mobile source emission models, the role of on-board diagnostic systems in inspection and maintenance programs, light- and heavy-duty vehicle emissions measurements, on- and off-road emissions measurements, effects of fuels and lubricating oils on emissions, as well as topics for future research.  相似文献   
43.
Anaerobic degradation, an effective treatment process of textile industry effluent, generates sulfonated aromatic amines, which are carcinogenic, mutagenic, and resistant to microbial degradation. These aromatic amines can be effectively removed by oxidative polymerization catalyzed by peroxidase enzyme. The amines, generated in this study from the anaerobic reduction by zero-valent iron of two reactive azo dyes (Reactive Red 2 [RR2] and Reactive Black 5 [RB5]), were successfully removed (90%) by Arthromyces ramosus peroxidase (ARP). For better understanding of the process, enzymatic treatment of two model compounds, diphenylamine (DPA) and 2-amino-8-naphthol-3,6-disulfonic acid (ANDSA), were also studied. Diphenylamine has a similar diarylamine bond as RR2. The ANDSA has a similar structure as the dye reduction products. The secondary amine bond in DPA and RR2 were oxidized by ARP. Enzymatic reaction of sulfonated aromatic amines generated soluble colored compounds, which were removed by coagulant. Optimum reaction parameters were also determined.  相似文献   
44.
The Coordinating Research Council held its 14th Vehicle Emissions Workshop in March 2004, where results of the most recent on-road vehicle emissions research were presented. We summarize ongoing work from researchers who are engaged in improving our understanding of the contribution of mobile sources to ambient air quality and emission inventories. Participants in the workshop discussed efforts to improve mobile source emission models, light- and heavy-duty vehicle emissions measurements, on- and off-road emissions measurements, effects of fuels and lubricating oils on emissions, as well as topics for future research.  相似文献   
45.
The people inhabiting the mountains of the Central Himalayan region of India are heavily dependent on their immediate natural resources for their survival. However, this resource-poor mountain ecosystem is gradually becoming unable to provide a minimum standard of living to its continually growing population. In this ecosystem, human population is doubling every 27–30 years, against the declining resource base, particularly forests. Forest are disappearing both quantitatively and qualitatively. Against the requirement of 18 ha of forest land to maintain production in 1 ha of cultivated land, the ratio of forests to cultivated land is only 1.33: 1. The present production from grasslands supports 8 units of livestock, against the ideal 2 units, and the gap between the demand and deficit of fodder is more than 5-fold. Loss of vegetative cover is resulting in drying up of water resources, compelling the women to walk longer distances to collect water. This ecological deterioration, apart from human growth and interference, is compounded by mountain specificities such as inaccessibility, fragility, marginality, diversity, niche and adaptability. The specificities manifest in isolation, distance, poor communication, limited mobility, etc., resulting in limited external linkages and replication of external experiences, and slow pace of development. They, therefore, restrict options for economic growth, effecting poverty and affecting the quality of life of the people of the region. Poverty, in this mountain ecosystem cannot be understood and assessed independent of ecological wealth and would better be termed as ecological poverty. The development efforts to be effective in alleviating poverty here, should take into account mountain specificities and incorporate options which have larger human dimensions, such as mechanisms for population control, socio-economic and cultural conditioning, indigenous knowledge systems of the local people and simple technologies that are already in practice or have potential and are based on least external inputs.  相似文献   
46.
Environmental Chemistry Letters - Endocrine disruptors are hazardous chemicals with chronic health effects for most living organisms, inducing homeostasis, hormonal imbalances, cancer, reproductive...  相似文献   
47.
Positive matrix factorization (PMF) was used to identify factors affecting fog formation in Kanpur during the ISRO-GBP land campaign-II (LC-II) in December 2004. PMF predicted factors were validated by contrasting the emission strength of sources in the foggy and clear periods, using a combination of potential source contribution function (PSCF) analysis and quantitative emission inventory information. A time series aerosol chemical data set of 29 days and 12 species was decomposed to identify 4-factors: Secondary species, Biomass burning, Dust and Sea salt. PMF predicted particle mass with a satisfactory goodness-of-fit (slope of 0.83 ± 0.17 and R2 of 0.8), and strong species within 11–12% relative standard deviation. Mean contributions of anthropogenic factors were significantly higher during the foggy period for secondary species (2.9 ± 0.3) and biomass burning (1.2 ± 0.09) compared to the clear period. Local sources contributing to aerosols that mediated fog events at Kanpur, based on emissions in a 200 km × 200 km area around Kanpur city were thermal power plants and transportation (SO2) and biofuel combustion (BC and OM). Regional scale sources influencing emissions during the foggy period, in probable source regions identified by PSCF included thermal power plants, transportation, brick kilns and biofuel combustion. While biofuel combustion and transportation are distributed area sources, individual point sources include coal-fired thermal power plants located in Aligarh, Delhi, Ghaziabad, Jhansi, Kanpur, Rae Bareli and Rupnagar and brick kilns located in Allahabad, Agra, Farrukhabad, Ghaziabad, Kanpur, Ludhiana, Lucknow and Rae Bareli. Additionally, in the foggy period, large areas of probable source regions lay outside India, implying the significance of aerosol incursion from outside India.  相似文献   
48.
The mesostructured materials MCM-41 and SBA-15 were studied as possible supports of bromocresol green (BG) dye impregnation for the ammonia gas detection because of their large surface area, high regenerative property, and high thermal stability. X-ray diffraction, transmission electron microscopy, scanning electron microscope, and N2 adsorption analysis were used to characterize the prepared materials. These materials could sense ammonia via visible color change from yellowish-orange to blue color. The color change process of the nanostructured materials was fully reversible during 10 cyclic tests. The results indicated that the ammonia absorption responses of the two nanostructured materials were both very sensitive, and high linear correlation and high precision were achieved. As the gaseous ammonia concentrations were 50 and 5 ppmv, the response times for the SBA-15/BG were only 1 and 5 min, respectively. Moreover, the BG dye-impregnated SBA-15 was less affected by the variation in the relative humidity. It also had faster response for the detection of NH3, as well as lower manufacturing price as compared to that of the dye-impregnated MCM-41. Such feature enables SBA-15/BG to be a very promising material for the detection of ammonia gas.

Implications: The detector tube is a convenient ambient ammonia detection device. However, almost all the commercial detector tubes can be used once only, which not only increases the purchase cost but also produces lots of waste. In this study, we developed two sensing materials that are sensitive for repeated usage. The two mesoporous silica-based materials, MCM-41 and SBA-15, are impregnated by an organic dye of bromocresol green to induce color change behavior that can be easily observed by the naked eye, and it is concluded that dye-impregnated SBA-15/BG is a very promising material for the detection of ammonia gas.  相似文献   
49.
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m−2 d−1. Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m−3, but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m−3, remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S1 and semi-diurnal S2 periodic components. At the advection-dominated points, radon concentration did not exhibit S1 or S2 components. At the reference points, however, the S2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle.  相似文献   
50.
The Coordinating Research Council, Inc. (CRC) held its 17th On-Road Vehicle Emissions Workshop in March 2007, where results of the most recent on-road vehicle emissions research were presented. We summarize ongoing work from researchers who are engaged in improving our understanding of the role and contribution of mobile sources to ambient air quality and emission inventories. Participants in the Workshop discussed efforts to improve mobile source emission models, light- and heavy-duty vehicle emissions measurements, on- and off-road emissions measurements, effects of fuels and lubricating oils on emissions, as well as emerging issues and topics for future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号