首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   879篇
  免费   10篇
  国内免费   15篇
安全科学   51篇
废物处理   23篇
环保管理   125篇
综合类   140篇
基础理论   220篇
环境理论   1篇
污染及防治   223篇
评价与监测   79篇
社会与环境   34篇
灾害及防治   8篇
  2023年   7篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   11篇
  2018年   17篇
  2017年   14篇
  2016年   18篇
  2015年   24篇
  2014年   15篇
  2013年   99篇
  2012年   35篇
  2011年   59篇
  2010年   41篇
  2009年   45篇
  2008年   54篇
  2007年   44篇
  2006年   34篇
  2005年   31篇
  2004年   27篇
  2003年   26篇
  2002年   34篇
  2001年   16篇
  2000年   17篇
  1999年   6篇
  1998年   13篇
  1997年   8篇
  1996年   13篇
  1995年   8篇
  1994年   11篇
  1993年   7篇
  1992年   11篇
  1991年   13篇
  1990年   7篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1982年   7篇
  1981年   6篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1971年   4篇
  1969年   4篇
  1960年   4篇
  1956年   3篇
排序方式: 共有904条查询结果,搜索用时 422 毫秒
281.
Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term 'common-garden' experiment to disentangle the effects of species' wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.  相似文献   
282.
Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term ‘common-garden’ experiment to disentangle the effects of species’ wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.  相似文献   
283.
Planetary Stewardship in an Urbanizing World: Beyond City Limits   总被引:1,自引:0,他引:1  
Cities are rapidly increasing in importance as a major factor shaping the Earth system, and therefore, must take corresponding responsibility. With currently over half the world’s population, cities are supported by resources originating from primarily rural regions often located around the world far distant from the urban loci of use. The sustainability of a city can no longer be considered in isolation from the sustainability of human and natural resources it uses from proximal or distant regions, or the combined resource use and impacts of cities globally. The world’s multiple and complex environmental and social challenges require interconnected solutions and coordinated governance approaches to planetary stewardship. We suggest that a key component of planetary stewardship is a global system of cities that develop sustainable processes and policies in concert with its non-urban areas. The potential for cities to cooperate as a system and with rural connectivity could increase their capacity to effect change and foster stewardship at the planetary scale and also increase their resource security.  相似文献   
284.
We argue that differences in the perception and governance of adaptation to climate change and extreme weather events are related to sets of beliefs and concepts through which people understand the environment and which are used to solve the problems they face (mental models). Using data gathered in 31 in-depth interviews with adaptation experts in Europe, we identify five basic stakeholder groups whose divergent aims and logic can be related to different mental models they use: advocacy groups, administration, politicians, researchers, and media and the public. Each of these groups uses specific interpretations of climate change and specifies how to deal with climate change impacts. We suggest that a deeper understanding and follow-up of the identified mental models might be useful for the design of any stakeholder involvement in future climate impact research processes. It might also foster consensus building about adequate adaptation measures against climate threats in a society.  相似文献   
285.
286.
Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP reaction products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions with localized effects of the fine lithofacies having the largest impact on U(VI) surface complexation. The ability to model the comprehensive biogeochemical reaction network, and spatially and temporally variable processes, properties, and conditions controlling uranium behavior during engineered bioremediation in the naturally complex Rifle IFRC subsurface system required a subsurface simulator that could use the large memory and computational performance of a massively parallel computer. In this case, the eSTOMP simulator, operating on 128 processor cores for 12h, was used to simulate the 110-day field experiment and 50 days of post-biostimulation behavior.  相似文献   
287.

Background  

Open-top chambers were used to study the impact of simultaneous exposure to atmospheric SO2 pollution and heavy metal contamination in soils on the metal contents and productivity of soybean plant.  相似文献   
288.
The CO2SINK pilot project at Ketzin is aimed at a better understanding of geological CO2 storage operation in a saline aquifer. The reservoir consists of fluvial deposits with average permeability ranging between 50 and 100 mDarcy. The main focus of CO2SINK is developing and testing of monitoring and verification technologies. All wells, one for injection and two for observation, are equipped with smart casings (sensors behind casing, facing the rocks) containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT). The in-hole Gas Membrane Sensors (GMS) observed the arrival of tracers and CO2 with high temporal resolution. Geophysical monitoring includes Moving Source Profiling (MSP), Vertical Seismic Profiling (VSP), crosshole, star and 4-D seismic experiments. Numerical models are benchmarked via the monitoring results indicating a sufficient match between observation and prediction, at least for the arrival of CO2 at the first observation well. Downhole samples of brine showed changes in the fluid composition and biocenosis. First monitoring results indicate anisotropic flow of CO2 coinciding with the “on-time” arrival of CO2 at observation well one (Ktzi 200) and the later arrival at observation well two (Ktzi 202). A risk assessment was performed prior to the start of injection. After one year of operations about 18,000 t of CO2 were injected safely.  相似文献   
289.
Filter light attenuation as a surrogate for elemental carbon   总被引:1,自引:0,他引:1  
Light attenuation (b(att)) measured from filter light transmission is compared with elemental carbon (EC) measurements for more than 180,000 collocated PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) and PM10 (PM < or = 10 microm in aerodynamic diameter) samples from nearly 200 U.S. locations during the past 2 decades. Although there are theoretical reasons for expecting highly variable relationships between b(att) and EC (such as the effects of "brown carbon" and iron oxides in PM2.5), reasonable correlations are found. These correlations are not a strong function of season or location (e.g., rural vs. urban). Median EC concentrations can be predicted from filter transmittance measurements to within +/- 15-30%. Although EC predicted from b(att) shows larger uncertainties (30-60%), especially at concentrations less than 0.3 microg/m3, the consistent mass absorption efficiency (sigm(att)) derived from the regression analysis demonstrates the feasibility of using b(att) as a surrogate for EC. This study demonstrates that a constant factor of 0.1 g/m2 (equivalent to the 10 m2/g sigma(att) used in the Interagency Monitoring of Protected Visual Environments chemical extinction formula) can be used to estimate EC concentrations from b(att) through a Teflon-membrane filter sample. Greater accuracy is achieved with site-specific sigma(att) derived from a period with collocated EC measurements.  相似文献   
290.
There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow(-1) h(-1) from dry cows and manure and 0.7 and 1.27 g cow(-1) h(-1) from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4 emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow(-1) h(-1) for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P < 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号