首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20642篇
  免费   79篇
  国内免费   83篇
安全科学   283篇
废物处理   1246篇
环保管理   2595篇
综合类   3351篇
基础理论   5561篇
环境理论   5篇
污染及防治   4618篇
评价与监测   1657篇
社会与环境   1433篇
灾害及防治   55篇
  2022年   91篇
  2021年   96篇
  2019年   70篇
  2018年   1581篇
  2017年   1467篇
  2016年   1380篇
  2015年   292篇
  2014年   254篇
  2013年   825篇
  2012年   751篇
  2011年   1728篇
  2010年   1000篇
  2009年   962篇
  2008年   1284篇
  2007年   1657篇
  2006年   431篇
  2005年   368篇
  2004年   398篇
  2003年   434篇
  2002年   427篇
  2001年   440篇
  2000年   322篇
  1999年   207篇
  1998年   123篇
  1997年   123篇
  1996年   108篇
  1995年   154篇
  1994年   148篇
  1993年   123篇
  1992年   130篇
  1991年   149篇
  1990年   119篇
  1989年   127篇
  1988年   132篇
  1987年   114篇
  1986年   83篇
  1985年   99篇
  1984年   134篇
  1983年   133篇
  1982年   123篇
  1981年   97篇
  1980年   93篇
  1979年   106篇
  1978年   89篇
  1977年   84篇
  1976年   78篇
  1975年   90篇
  1974年   101篇
  1972年   69篇
  1965年   74篇
排序方式: 共有10000条查询结果,搜索用时 960 毫秒
781.
Microbe-assisted phytoremediation provides an effective approach to clean up heavy metal-contaminated soils. However, severe drought may affect the function of microbes in arid/semi-arid areas. Streptomyces pactum Act12 is a drought-tolerant soil actinomycete strain isolated from an extreme environment on the Qinghai-Tibet Plateau, China. In this study, pot experiments were conducted to assess the effect of Act12 on Cd tolerance, uptake, and accumulation in amaranth (Amaranthus hypochondriacus) under water deficit. Inoculated plants had higher Cd concentrations (root 8.7–33.9 %; shoot 53.2–102.1 %) and uptake (root 19.9–95.3 %; shoot 110.6–170.1 %) than non-inoculated controls in Cd-treated soil. The translocation factor of Cd from roots to shoots was increased by 14.2–75 % in inoculated plants, while the bioconcentration factor of Cd in roots and shoots was increased by 10.2–64.4 and 53.9–114.8 %, respectively. Moreover, inoculation with Act12 increased plant height, root length, and shoot biomass of amaranth in Cd-treated soil compared to non-inoculated controls. Physiochemical analysis revealed that Act12 enhanced Cd tolerance in the plants by increasing glutathione, elevating superoxide dismutase and catalase activities, as well as reducing malondialdehyde content in the leaves. The drought-tolerant actinomycete strain Act12 can enhance the phytoremediation efficiency of amaranth for Cd-contaminated soils under water deficit, exhibiting potential for application in arid and semi-arid areas.  相似文献   
782.
It has become increasingly apparent that global manganese (Mn) pollution to air and water is a significant threat to human health. Despite this recognition, research is only beginning to comprehend the detrimental effects of exposure. Mn, while essential, is particularly harmful to the central nervous system, and overexposure is symptomatic of several neurological disorders. At-risk populations have been identified, but it is still unclear whether typical exposure levels have any long-term consequences. Those at an elevated risk have diminished intellectual function, learning and memory, and mental development. While the overall mechanism of toxicity is undetermined, Mn has been found to induce oxidative stress, exacerbate mitochondrial dysfunction, dysregulate autophagy, and promote apoptosis, ultimately enhancing neurodegeneration. Extrapolation of this in vitro and in vivo data to humans is difficult. There is a definite need to correlate epidemiological studies with causative effects. It is imperative that research efforts endure, so threats are appropriately identified and exposure properly regulated.  相似文献   
783.
Major and trace element, PAH, and PCB concentrations were measured in surface sediments and particles from sediment traps collected in the First and Second Basin of the Mar Piccolo (Gulf of Taranto) in two periods (June–July and August–September, 2013). The aim of the study was to evaluate pollution degree, sediment transport and particle redistribution dynamic within the area. Results confirm the higher contamination of sediments from the First Basin observed by previous researches, particularly for Cu, Hg, Pb, total PAHs, and total PCBs. Advective transport from the First to the Second Basin appears to be the leading transfer mechanism of particles and adsorbed contaminants, as evidenced by measured fluxes and statistical analyses of contaminant concentrations in surficial sediments and particles from sediment traps. Long-range selective transports of PAHs and microbial anaerobic degradation processes for PCBs have been also observed. These results are limited to a restricted time window but are consistent with the presence of transport fluxes at the bottom of the water column. This mechanism deserves further investigation and monitoring activities, potentially being the main responsible of pollutant delivering to the less contaminated sectors of the Mar Piccolo.  相似文献   
784.
This study is part of our investigations about the release of persistent organic pollutants from melting Alpine glaciers and the relevance of the glaciers as secondary sources of legacy pollutants. Here, we studied the melt-related release of polychlorinated biphenyls (PCBs) in proglacial lakes and glacier streams of the catchment of the Silvretta glacier, located in the Swiss Alps. To explore a spatial and temporal distribution of chemicals in glacier melt, we combined two approaches: (1) analysing a sediment record as an archive of past remobilization and (2) passive water sampling to capture the current release of PCBs during melt period. In addition, we determined PCBs in a non-glacier-fed stream as a reference for the background pollutant level in the area. The PCBs in the sediment core from the Silvretta lake generally complied with trends of PCB emissions into the environment. Elevated concentrations during the most recent ten years, comparable in level with times of the highest atmospheric input, were attributed to accelerated melting of the glacier. This interpretation is supported by the detected PCB fractionation pattern towards heavier, less volatile congeners, and by increased activity concentrations of the radioactive tracer 137Cs in this part of the sediment core. In contrast, PCB concentrations were not elevated in the stream water, since no significant difference between pollutant concentrations in the glacier-fed and the non-glacier-fed streams was detected. In stream water, no current decrease of the PCBs with distance from the glacier was observed. Thus, according to our data, an influence of PCBs release due to accelerated glacier melt was only detected in the proglacial lake, but not in the other compartments of the Silvretta catchment.  相似文献   
785.
786.
The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was found that total nitrogen (TN) and total phosphorous (TP) in upland were more sensitive to NPS pollutants loading than in paddy fields. The results of this study have implications for management of the TGR to reduce the loading of NPS pollutants into downstream water bodies.  相似文献   
787.
In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with 13C and 15N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.  相似文献   
788.
789.
During the past decade, there has been increasing global concern over the rise of anthropogenic CO2 emission into the Earth’s atmosphere (J Air Waste Manage Assoc 53:645–715, 2003). The utilization of CO2 to produce any valuable product is need of the hour. The production of syngas from CO2 and CH4 seems to be one of the promising alternatives in terms of industrial utilization, as it offers several advantages: (a) mitigation of CO2, (b) transformation of natural gas and CO2 into valuable syngas, and (c) producing syngas with H2/CO ratio 1 which may further be used for the production of valuable petrochemicals (J Air Waste Manage Assoc 53:645–715, 2003). A conceptual design for the production of synthesis gas by dry reforming of methane is presented here. An economic assessment of this process with an integrated methanol production section as a case was conceptualized and compared with the conventional steam methane reforming route to produce methanol. The economic study indicated that dry reforming of natural gas/methane is a competitive process with lower operating and capital costs in comparison with steam reforming assuming negligible cost of CO2 import.  相似文献   
790.
Massanjore reservoir (area ~67 km2) located 84 km downstream from the most distant upstream source capacitates 620,000,000 m3 of water, and regulated flow characters are highly responsible for dam downstream alteration of hydrological, sedimentological and geomorphological characteristics of Mayurakshi River. In dam after condition, monsoon water level (mean water level during monsoon months) and pre-monsoon water level (mean water level during pre-monsoon months, i.e., March–May) have attenuated about 0.56 and 0.32 m, respectively. Maximum duration of high flow period during monsoon has reduced up to 16.5 %; coefficient of variation of diurnal fluctuation of water level during monsoon has increased from 31 to 47 %. Suspended sediment load in Mayurakshi River is reduced to 34 % in dam after period as recorded at Narayanpur gauge station. Average suspended sediment load has decreased even after Tilpara barrage construction from 4.960 to 4.350 mg/L. Average suspended sediment load is 7.875 mg/L in the sites of dam upstream course, and this average is only 4.46 mg/L in different sites of dam downstream course. Volume of discharge has decreased up to 11.3 % during monsoon time in dam after condition. Such reduction in discharge volume in turn has reduced about 24.6 % bed load-carrying capacity. As a result, huge deposition within channel invigorated channel bed aggradations (average 73.6 cm up to Saspara, site 14 at Fig. 1) in dam after condition. Narrowing of active channel, coarsening of channel bed materials, lowering of lateral stability, accelerating rise of braiding index, mixed response of the channel adjustment of the tributaries to local scale positive or negative base level change due to river bed aggradations and degradation, etc. signify the morphological alteration of dam downstream course.
Fig. 1 Mayurakshi River basin indicating Massanjore Dam, Tilpara barrage and sample working sites
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号