首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
  国内免费   4篇
安全科学   2篇
废物处理   11篇
环保管理   3篇
综合类   17篇
基础理论   25篇
污染及防治   25篇
评价与监测   2篇
社会与环境   8篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   16篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
  1983年   1篇
  1969年   1篇
  1956年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
31.
Carbon Molecular Sieving Membranes Derived from Lignin-Based Materials   总被引:1,自引:0,他引:1  
Carbon molecular sieving membranes were prepared by pyrolysis of lignocresol derived from lignin by the phase-separation method. Lignocresol membranes formed by a dip process on a porous -alumina tubing were carbonized at 400–800°C under nitrogen atmosphere. The thickness of the membrane formed on the outer surface of the substrate was about 400 nm judging from SEM observation. Gas-evolving behavior of lignocresol was measured using thermogravimetry-mass spectrometry (TG-MS). The gaseous products evolved from lignocresol included a number of fragments with higher molecular weights; whereas those from phenolic resin are mainly due to phenol and methylphenol. These evolved pyrolysis fragments effectively contribute to micropore formation of carbonized lignocresol membranes. Gas permeation rates through the membrane decreased in the order of increasing kinetic molecular diameter of the penetrant gas, and the membrane behaved like a molecular sieve. The permeation properties were dependent on heating conditions, and a pyrolysis temperature of 600°C gave the best membrane performance. Gas selectivities of the membrane prepared at 600°C were 50, 8, 290, and 87 for CO2/N2, O2/N2, H2/CH4, and CO2/CH4 at 35°C, respectively.  相似文献   
32.
The evolution of the gall-inducing ability in insects and the adaptive significance of the galling habit have been addressed by many studies. Cicadulina bipunctata, the maize orange leafhopper, is an ideal study organism for evaluating these topics because it can be mass-reared and it feeds on model plants such as rice (Oryza sativa) and maize (Zea mays). To reveal differences between gall inductions by C. bipunctata and other gall inducers, we conducted four experiments concerning (a) the relationship between the feeding site and gall-induction sites of C. bipunctata on maize, (b) the effects of leafhopper sex and density, (c) the effects of length of infestation on gall induction, and (d) the effects of continuous infestation. C. bipunctata did not induce galls on the leaves where it fed but induced galls on other leaves situated at more distal positions. The degree of gall induction was significantly correlated with infestation density and length. These results indicate that C. bipunctata induces galls in a dose-dependent manner on leaves distant from feeding sites, probably by injecting chemical(s) to the plant during feeding. We suggest that insect galls are induced by a chemical stimulus injected by gall inducers during feeding into the hosts.  相似文献   
33.
We tested the hypothesis that a large body size and rapid growth rate affect the survival of larval Pacific bluefin tuna, Thunnus orientalis (PBT), and analyzed larval growth in relation to environmental conditions. Seven high density larval patches of PBT were tracked with reference buoys in the northwestern Pacific Ocean for 28–171 h in May–June from 2004 to 2008. The otolith radii and daily growth rates of the survivor larvae (collected on later tracking days of each tracking session) tended to be larger and more rapid, respectively, than those of original larvae (collected on earlier tracking days). A large body size was found to positively affect the survival of larval PBT, as did a rapid growth rate, even at an early larval stage (7 days after hatching). Generalized linear modeling showed that the otolith radius was influenced positively by the sea temperature, stratification parameter and food density, while the growth rate was influenced positively by the sea temperature and food density.  相似文献   
34.
The vertical diffusional mass (solute) transfer through a suspended sediment layer, e.g. at the bottom of a lake, reservoir or estuary, by the propagation of velocity fluctuations from above was investigated. The attenuation of the velocity fluctuations in the suspension layer and the associated effect on solute transfer through the suspension layer was simulated. To represent large eddies traveling downstream in water over a high-concentration suspended sediment layer, a streamwise velocity fluctuation moving in downstream direction was imposed along the upper boundary of the suspension layer. Velocity fluctuations and downstream velocity were normalized by the shearvelocity (U*) at the top of the suspension layer. Streamwise and vertical velocity components inside the suspension layer, were obtained from the 2-D continuity and the Navier–Stokes equations. The persistence of turbulence with depth—as it penetrates from the overlying water into the suspension layer—was found to depend on its amplitude, its period, and on the apparent viscosity of the suspension. The turbulence was found to propagate efficiently into the suspension layer when its frequency is low, and the apparent viscosity of the suspension is high. Effects on vertical mass transfer were parameterized by penetration depth and effective diffusion coefficient, and related to apparent viscosity of the suspension, Schmidt number and shear velocity on top of the suspension layer. The enhancement of turbulence penetration by viscosity is similar to the flow near an oscillating flat plate (Stokes’ second problem), but is opposite to turbulence penetration into a stationary porous and permeable sediment bed. The information is applicable to water quality modeling mear the sediment/water interface of lakes, river impoundments and estuaries.  相似文献   
35.
36.
Curvemysella paula is a markedly crescent-shaped bivalve that lives inside snail shells occupied by hermit crabs. Here, we describe the unique symbiotic life, growth pattern, and reproductive biology of this bivalve, based on specimens collected from the shallow, muddy bottom of the Seto Inland Sea, Japan. C. paula was found attached to columellae in the siphonal canal, mainly of nassariid snail shells occupied by two types of hermit crabs: Diogenes edwardsii (Diogenidae) and Spiropagurus spiriger (Paguridae). The crescent-shaped shell of C. paula is an adaptation to symbiotic life in the narrow interspace between the snail shell and the hermit-crab abdomen. C. paula is a protandric hermaphrodite. In our samples, each host snail shell harbored one (or rarely a few) large female and several males. All the female bivalves settled on the host shells with their anterior end facing outward and benefited from currents created by the hermit crab when feeding. In the muddy bottom, snail shells are a limited resource for both the hermit crabs and symbiotic bivalves. The bivalves benefit from the mobility of the hermit crabs, which prevent the shells from becoming buried in the mud. C. paula represents the only example of obligate commensalism with hermit crabs found in Bivalvia.  相似文献   
37.
We studied the feasibility of using biological granular activated carbon-packed column in treating methylene blue-containing wastewater. The granular activated carbon with immobilized microbes was packed into a column and fed with 3 liter methylene blue-containing wastewater daily. With initial 1350 mg/l of methylene blue and 1550 mg/l of chemical oxygen demand, it was observed that the colour and chemical oxygen demand removal efficiencies were 99 and 78%, respectively. The high treatment performance of the system could be due to the simultaneous adsorption and biodegradation processes and advantages of immobilized microbes compare to suspended cell system.  相似文献   
38.
We proposed the carbon sink project called “Carbon Sequestration by Forestation and Carbonization (CFC),” which involves biomass utilization and land conservation by incorporating the products of biomass carbonization into the agents for soil improvement, water purification, etc. Our purpose was to demonstrate the potential of the CFC scheme for carbon sequestration, particularly carbon storage in soil. Case studies were conducted in both developing and developed countries. 1. In southern Sumatra, Indonesia, 88,369 Mg-C year−1 of wood residue from a plantation forest and excess bark from a pulp mill would be converted into 15,571 Mg-C year−1 of the net carbon sink by biochar for soil improvement. The fixed carbon recovery of the system is 21.0%. 2. In a semiarid region in western Australia, the carbonization of wood residue was incorporated with multipurpose projects of a mallee eucalyptus plantation that involved the function of salinity prevention. During the project period of 35 years, the total carbon sink would reach 1,035,450 Mg-C with 14.0% by aboveground biomass, 33.1% by belowground biomass and 52.8% by biochar in soil. 3. In southern Kyushu, Japan, the study was focused on the effective use of surplus heat from a garbage incinerator for carbonizing woody materials. Sawdust of 936.0 Mg-C year−1 would be converted into the net carbon sink of 298.5 Mg-C year−1 by carbonization, with the fixed carbon recovery of the system being 31.9%. Consequently, the CFC project could encourage the creation of a carbon sink in soil. However, we recognize that the quality standard of biochar, the stability of biochar in soil, and the methods for monitoring biochar utilization must be clarified before incorporating biochar carbon into the carbon credit system. Throughout this article (except for diagrams and in citation details) carbonized biomass is, with the authors'agreement, called ‘biochar’ in lieu of the commonly used but misleading word ‘charcoal’ (Editor).  相似文献   
39.
Water-swelling material (WSM) is a fluid sealant obtained by blending high-absorbency polymer, a filler, and a solvent by using a synthetic resin elastomer as the base material. In this research, we studied experimentally the composition of WSM, the extent of swelling, the strength of the WSM and the long-term performance of the swelling material used as a jointed water cutoff treatment material at waste landfill sites. One of the results was that adjusting the degree of etherification of the high-absorbency polymer, which is a component of the WSM, and the resin content of the synthetic elastomer contributed to improvement of the swelling of the sealant and the strength of the swelling material. Further, in long-term tests, the strength of the WSM tended to become stabilized and it was confirmed that it had sufficient pressure resistance for use in coastal landfill sites, where its application as a water cutoff treatment material is being considered.  相似文献   
40.
Summary. Individual variations in pheromone emission patterns were examined in a scarab beetle, Anomala cuprea Hope (Coleoptera: Scarabaeidae), by headspace collection of airborne volatiles from individual females. The amount of pheromone obtained varied among virgin females, and about 16% of these females (“silent” females) did not emit detectable amount of pheromone throughout the experimental period. There was no clear temporal pattern of peak pheromone emission for 19 days after the onset. More than half of the laboratory mated females completely stopped releasing pheromone after the first mating, while the rest of them continued releasing pheromone, frequently followed by additional mating. Received 26 March 2001; accepted 28 January 2002.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号