首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   4篇
  国内免费   15篇
安全科学   29篇
废物处理   24篇
环保管理   99篇
综合类   55篇
基础理论   94篇
污染及防治   150篇
评价与监测   53篇
社会与环境   34篇
灾害及防治   3篇
  2023年   5篇
  2022年   22篇
  2021年   20篇
  2020年   6篇
  2019年   3篇
  2018年   13篇
  2017年   15篇
  2016年   22篇
  2015年   14篇
  2014年   22篇
  2013年   61篇
  2012年   13篇
  2011年   28篇
  2010年   24篇
  2009年   17篇
  2008年   21篇
  2007年   23篇
  2006年   20篇
  2005年   11篇
  2004年   16篇
  2003年   17篇
  2002年   17篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   3篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1987年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1964年   2篇
  1963年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1955年   3篇
排序方式: 共有541条查询结果,搜索用时 15 毫秒
451.
Measurements of air pollutants from a background site in central London are analysed. These comprise hourly data for CO, NO, NO2, O3, SO2 and PM10 from 1996 to 2008 and particle number count from 2001 to 2008. The data are analysed in terms of long-term trends, annual, weekly and diurnal cycles, and autocorrelation and cross-correlation functions. CO, NO and NO2 show a typical traffic-associated pattern with two daily peaks and lesser concentrations at the weekend. Particle number count and PM10 show a similar cycle, but with smaller amplitude. Ozone has an annual cycle with a maximum in May, influenced by the spring maximum in background ozone, but the diurnal and weekly cycles are dominated by losses through reaction with nitric oxide. Particle number count shows a minimum corresponding with maximum air temperatures in August, whereas the CO, NO NO2 and SO2 show a minimum in June/July. There is a lower particle count to NOx ratio at the background site compared to a central London kerbside site (Marylebone Road) and a seasonal pattern in particle count to NOx and PM10 ratios consistent with loss of nanoparticles by evaporation during atmospheric transport. Sulphur dioxide peaks in the morning in summer, but at midday in winter consistent with emissions from elevated sources mixing down from aloft as the diurnal mixed layer deepens. Implications for epidemiological studies of air quality and health are discussed. Sulphur dioxide, carbon monoxide, nitric oxide and nitrogen dioxide show clear downward trends over the measurement period, PM10 declines initially before levels stabilised, and ozone concentrations increased.  相似文献   
452.
Abstract: Although total impervious area (TIA) is often used as an indicator of urban disturbance, recent studies suggest that the subset of impervious surfaces that route stormwater runoff directly to streams via stormwater pipes, called directly connected impervious area (DCIA), may be a better predictor of stream ecosystem alteration. We evaluated the differences between TIA and DCIA in the Shepherd Creek catchment, a small (1.85‐km2), suburban basin in Cincinnati, Ohio. Imperviousness determinations were calculated based on publicly available geographic information system (GIS) data and parcel‐scale field assessments, and these direct assessments were compared to DCIA calculated from published, empirical relationships. Impervious and semi‐impervious area comprised 13.1% of the catchment area, with 56.3% of the impervious area connected. When summarized by subcatchments (0.26‐1.85 km2), TIA measured in the field (11‐23%) was considerably higher than that calculated from the National Land Cover Data Imperviousness Layer (7‐18%). In contrast, TIA calculated based on aerial photos was similar to TIA calculated from field assessments, thus indicating that photo interpretation may be adequate for catchment‐scale (>25 ha) TIA determinations. While these GIS data sources can be used to calculate TIA, on‐site assessments were necessary to accurately determine DCIA within residential parcels. There was a wide variation in percent connectivity across parcels, and, subsequently, DCIA was not accurately predicted from empirical relationships with TIA. We discuss applications of DCIA data that highlight the importance of parcel‐scale field assessments for managing suburban watersheds.  相似文献   
453.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of unmodified bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were subjected to X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), mechanical characterization and scanning electron microscope (SEM). Significant changes in the tensile properties were observed depending on the different chemical constituents of the films. The presence of clay and crosslinking with epichlorohydrin were both found to have considerable effect on the morphology and mechanical property of the films. The SEM investigations, XRD analysis and FTIR studies revealed the interaction between the various chemical components of the films.  相似文献   
454.
Photocatalytic oxidation (PCO) was investigated in a bench-scale reactor for the abatement of two airborne organic contaminants: toluene and ethanol. A mathematical model that includes the impacts of light intensity, initial contaminant concentration, catalyst thickness, and relative humidity (RH) on the degradation of organic contaminants in a photocatalytic reactor was developed to describe this process. The commercially available catalyst Degussa-PtTiO2 was selected to compare with the MTU-PtTiO2-350 catalyst, which was synthesized by the sol-gel process, platinized, and calcined at 350 degrees C. For toluene removal using the MTU-PtTiO2-350 catalyst, the degradation rate increased with increases in light intensity from 0.2 to 2.2 mW/cm2 and in catalyst thickness from 0.00037 to 0.00361 cm. However, further increases in light intensity and catalyst thickness had only slight effect on the toluene degradation rate. Increasing the initial concentration from 6.29 to 127.9 microg/L and the RH from 10 to 85% resulted in decreases in the toluene degradation rate. For ethanol removal using the MTU-PtTiO2-350 catalyst, the degradation rate increased more rapidly with an increase in RH from 17 to 56%; the RH had little effect on the ethanol degradation rate while it further increased from 56% to 82%. We discuss applicability of the model to estimate the influence of process variables and to evaluate photocatalyst performance.  相似文献   
455.
BACKGROUND: Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. METHODS: Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L(-1) suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. RESULTS: Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. DISCUSSION: Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. CONCLUSIONS: In general, As(V) and organic As were the dominant species in solution, which is surprising under anaerobic conditions in terrestrial environments. The unexpected occurrence of organic species of As was attributed to enrollment of ternary organic complexes or living organisms such as algae or cyanobacteria. PERSPECTIVES: These findings are believed to be useful for remediation strategies in mine-affected regions, as the organic As species are in general considered to be less toxic than inorganic ones and even As(V) is considered less mobile and toxic than As(III).  相似文献   
456.
Two sites representing different aquifer types, i.e., Dommel (sandy) and Flémalle (gravelly loam) along the Meuse River, have been selected to conduct microcosm experiments. Various conditions ranging from aerobic over nitrate- to sulphate reducing were imposed. For the sandy aquifer, nitrate reducing conditions predominated, which specifically in the presence of a carbon source led to pH increases and enhanced Zn removal. For the calcareous gravelly loam, sulphate reduction was dominant resulting in immobilization of both Zn and Cd. For both aquifer types and almost all redox conditions, higher arsenic concentrations were measured in the groundwater. Analyses of different specific microbial populations by polymerase chain reaction (PCR) revealed the dominance of denitrifiers for the Dommel site, while sulfate reducing bacteria (SRB) were the prevailing population for all redox conditions in the Flémalle samples.  相似文献   
457.
Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.  相似文献   
458.
459.
Experimental study was performed on a single basin active solar distillation system augmented with a solar collector using evacuated solar tubes. Field tests were conducted over several days under the climatic conditions of West Texas to evaluate the effect evacuated solar tubes have on the daily distillate yield rate. To investigate the feasibility of the solar tubes, active and passive solar stills with and without exterior insulation were examined. The maximum daily production rate for the active distillation system using evacuated solar tubes and the passive distillation system was 3.6 and 1.4 kg/m2day, respectively. The results showed the augmentation of the still with evacuated solar tubes increased its production capacity by a factor of 2.63. It also increased the maximum temperature of the water in the still basin by at least 20 °C. Economic analysis shows that it is feasible to use evacuated tubular collector coupled solar still as an alternative means for reclaiming water in farmlands with a payback period of approximately 6 years.  相似文献   
460.
In this paper, experiments have been performed in order to determine the quantity of water produced from the atmospheric air using different desiccant materials named Silica gel, Activated alumina and Molecular sieve 13 X. On the bases of experimental results, a correlation is derived among the different temperatures and water production using Central Composite Design (CCD) of Response Surface Methodology. A newly designed solar glass desiccant box type system (SGDBS), three in number, has been used. Design parameters for the production of water has been taken as depth of material from the glass is 0.22 m, inclination in angle as 30°, effective thickness of glass as 3 mm and number of glazing as single. It has been found experimentally that the maximum quantity of water produced by Silica gel, Activated alumina and Molecular sieve 13 X is 160, 20 and 35 ml/kg/day, respectively. Whereas theoretically, value of water produced by the Silica gel, Activated alumina and Molecular sieve 13 X is 600, 28 and 60 ml/kg/day, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号