首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2147篇
  免费   63篇
  国内免费   28篇
安全科学   139篇
废物处理   85篇
环保管理   516篇
综合类   238篇
基础理论   563篇
环境理论   2篇
污染及防治   446篇
评价与监测   136篇
社会与环境   77篇
灾害及防治   36篇
  2023年   16篇
  2022年   25篇
  2021年   23篇
  2020年   32篇
  2019年   32篇
  2018年   52篇
  2017年   69篇
  2016年   78篇
  2015年   69篇
  2014年   66篇
  2013年   144篇
  2012年   94篇
  2011年   165篇
  2010年   111篇
  2009年   97篇
  2008年   125篇
  2007年   137篇
  2006年   128篇
  2005年   79篇
  2004年   79篇
  2003年   89篇
  2002年   66篇
  2001年   44篇
  2000年   35篇
  1999年   36篇
  1998年   32篇
  1997年   17篇
  1996年   30篇
  1995年   22篇
  1994年   23篇
  1993年   22篇
  1992年   22篇
  1991年   13篇
  1990年   16篇
  1989年   7篇
  1988年   13篇
  1987年   18篇
  1986年   12篇
  1985年   7篇
  1984年   10篇
  1983年   10篇
  1982年   15篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1974年   4篇
  1969年   3篇
  1967年   3篇
  1935年   3篇
  1926年   2篇
排序方式: 共有2238条查询结果,搜索用时 15 毫秒
101.
The aim of the present work was to establish the kinetics for the degradation of doxycycline in the aquatic environment with a view to arriving at a kinetic model that can be used to predict the persistence of antibiotic with confidence. The degradation of doxycycline in both water and sediment phases of aquatic microcosm experiments, as well as in distilled water control experiments, was studied over a period of 90 days. An initial 21% loss due to adsorption by the sediment was observed in the microcosm experiment soon after charging. Biphasic zero-order linear rates of degradation, attributed to microbial degradation of the free and sediment or colloidal particle-adsorbed antibiotic, were observed for both water phase (2.3 × 10?2 and 4.5 × 10?3 μgg?1 day?1) and sediment phase (7.9 × 10?3 and 1.5 × 10?3 μgg?1 day?1) of the microcosm experiment. The covered distilled water control experiment exhibited a monophasic zero-order linear rate (1.9 × 10?3 μgg?1 day?1) attributed to hydrolysis, while the distilled water experiment exposed to natural light exhibited biphasic liner rates attributed to a combination of hydrolysis and photolysis (2.9 × 10?3 μgg?1 day?1) and to microbial degradation (9.8 × 10?3 μgg?1 day?1). A kinetic model that takes into account hydrolysis, photolysis, microbial degradation as well as sorption/desorption by colloidal and sediment particles is presented to account for the observed zero-order kinetics. The implications of the observed kinetics on the persistence of doxycycline in the aquatic environment are discussed.  相似文献   
102.
Alternative vehicular fuels are proposed as a strategy to reduce urban air pollution. In this paper, we analyze the emission Impacts of electric vehicles In California for two target years, 1995 and 2010. We consider a range of assumptions regarding electricity consumption of electric vehicles, emission control technologies for power plants, and the mix of primary energy sources for electricity generation. We find that, relative to continued use of gasoline-powered vehicles, the use of electric vehicles would dramatically and unequivocally reduce carbon monoxide and hydrocarbons. Under most conditions, nitrogen oxide emissions would decrease moderately. Sulfur oxide and particulate emissions would Increase or slightly decrease. Because other areas of the United States tend to use more coal in electricity generation and have less stringent emission controls on power plants, electric vehicles may have less emission reduction benefits outside California.  相似文献   
103.
ABSTRACT

Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5μm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals.

Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors.

This paper describes a preliminary research effort to develop a methodology for the measurement of nonvi-able biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 um were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 um is evidence of fragmentation of larger source particles that are known allergens.  相似文献   
104.
Solvent extraction of contaminated soils, sludges and sediments has been successfully completed at a number of Superfund sites. Each commercialized process uses a unique operating system to extract organic contaminants from solids. These operating systems may be classified by the properties of the solvents each utilizes: (1) standard solvents, (2) near-critical fluids/liquified gases, and (3) critical solution temperature solvents. Pretreatment and post-treatment requirements vary depending upon the operating systems of the solvent extraction system. Future demonstrations of these technologies by the U.S. EPA’s Superfund Innovative Technology Evaluation Program will provide additional information regarding the efficacy of these processes.  相似文献   
105.
ABSTRACT

Methods that measure PM25 mass, total particulate NO3 -, and elemental carbon (EC) were evaluated in seven U.S. cities from 1997 to 1999. Sampling was performed in Bakersfield, CA; Boston, MA; Chicago, IL; Dallas, TX; Philadelphia, PA; Phoenix, AZ; and Riverside, CA. Evaluating and validating methods that measure the components of fine mass are important to the effort of establishing a speciation-monitoring network. The Harvard Impactor (HI), which measures fine particle mass, showed excellent agreement (r2 = 0.99) with the PM25 Federal Reference Method (FRM) for 81 24-hr samples in Riverside and Bakersfield. The HI also showed good precision (4.8%) for 243 24-hr collocated samples over eight studies.

The Aethalometer was employed in six of the sampling locations to measure black carbon (BC). These values were compared to EC as measured from a quartz filter using thermal analysis. For the six cities combined, the two methods were highly correlated (r2 = 0.94; 187 24-hr samples); however, the BC values were approximately 24% less than the EC measurements consistently across all six cites. This compares well to results observed for EC/BC measurements observed in other semi-urban areas. Par-ticulate NO3 - was measured using the Harvard-EPA Annular Denuder System (HEADS). This was compared to the NO3 - measured from the HI Teflon (DuPont) filter to assess NO3 - artifacts. Significant NO3 - losses (approximately 50% of total NO3 -) were found in Riverside, Philadelphia, and Boston, while minimal artifacts were observed in the other sites. Two types of HEADS configurations were employed in five cities. One system used a Na2CO3-coated glass fiber filter, and the other type used a nylon filter to collect volatilized NO3 - from the Teflon filter. The HEADS with the Na2CO3-coated filter consistently underestimated the total particulate NO3 - by approximately 20% compared to the nylon HEADS.  相似文献   
106.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest under growth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources.

Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using “as-planned” (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event.

Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   
107.
Black carbon (BC), an important component of the atmospheric aerosol, has climatic, environmental, and human health significance. In this study, BC was continuously measured using a two-wavelength aethalometer (370 nm and 880 nm) in Rochester, New York, from January 2007 to December 2010. The monitoring site is adjacent to two major urban highways (I-490 and I-590), where 14% to 21% of the total traffic was heavy-duty diesel vehicles. The annual average BC concentrations were 0.76 μg/m3, 0.67 μg/m3, 0.60 μg/m3, and 0.52 μg/m3 in 2007, 2008, 2009, and 2010, respectively. Positive matrix factorization (PMF) modeling was performed using PM2.5 elements, sulfate, nitrate, ammonia, elemental carbon (EC), and organic carbon (OC) data from the U.S. Environmental Protection Agency (EPA) speciation network and Delta-C (UVBC370nm – BC880nm) data. Delta-C has been previously shown to be a tracer of wood combustion factor. It was used as an input variable in source apportionment models for the first time in this study and was found to play an important role in separating traffic (especially diesel) emissions from wood combustion emissions. The result showed the annual average PM2.5 concentrations apportioned to diesel emissions in 2007, 2008, 2009, and 2010 were 1.34 μg/m3, 1.25 μg/m3, 1.13 μg/m3, and 0.97 μg/m3, respectively. The BC conditional probability function (CPF) plots show a large contribution from the highway diesel traffic to elevated BC concentrations. The measurements and modeling results suggest an impact of the U.S Environmental Protection Agency (EPA) 2007 Heavy-Duty Highway Rule on the decrease of BC and PM2.5 concentrations during the study period.

Implications: This study suggests that there was an observable impact of the U.S EPA 2007 Heavy-Duty Highway Rule on the ambient black carbon concentrations in Rochester, New York. Aethalometer Delta-C was used as an input variable in source apportionment models and it allowed the separation of traffic (especially diesel) emissions from wood combustion emissions.  相似文献   
108.
This work presents a short review of adsorptive materials proposed and tested for removing phthalates from an aqueous environment. The objective is not to present an exhaustive review of all the types of adsorbents used, but to focus on selected types of "innovative" materials. Examples include modified activated carbon, chitosan and its modifications, β-cyclodextrin, and specific types of biomass, such as activated sludge from a wastewater treatment plant, seaweed and microbial cultures. Data from the literature do not confirm the existence of a broad-spectral adsorbent with high sorption efficiency, low production costs and environmentally friendly manufacture. According to the coefficients of Freundlich's isotherm, the most promising adsorbent of those mentioned in this work appears to be the biomass of activated sludge, or extracellular polysaccharides extracted from it. This material benefits from steady production, is cheap and readily available. Nevertheless, before putting it in practice, the treatment and adaptation of this raw material has to be taken into consideration.  相似文献   
109.
A series of miscible-displacement experiments was conducted to examine the retention and transport behavior of oocysts in natural porous media. Three soils and a model sand were used that differed in physical and geochemical properties. Transport behavior was examined under various treatment conditions to help evaluate retention mechanisms. Significant retention of oocysts was observed for all media despite the fact that conditions were unfavorable for physicochemical interactions with respect to DLVO theory. The magnitude of retention was not influenced significantly by alterations in solution chemistry (reduction in ionic strength) or soil surface properties (removal of soil organic matter and metal oxides). On the basis of the observed results, it appears that retention by secondary energy minima or geochemical microdomains was minimal for these systems. The porous media used for the experiments exhibited large magnitudes of surface roughness, and it is suggested that this surface roughness contributed significantly to oocyst retention.  相似文献   
110.
Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0-2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m yr. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号