首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1988篇
  免费   52篇
  国内免费   20篇
安全科学   132篇
废物处理   83篇
环保管理   467篇
综合类   237篇
基础理论   502篇
环境理论   2篇
污染及防治   401篇
评价与监测   131篇
社会与环境   73篇
灾害及防治   32篇
  2023年   15篇
  2022年   23篇
  2021年   23篇
  2020年   28篇
  2019年   24篇
  2018年   48篇
  2017年   62篇
  2016年   69篇
  2015年   66篇
  2014年   61篇
  2013年   139篇
  2012年   91篇
  2011年   158篇
  2010年   103篇
  2009年   91篇
  2008年   118篇
  2007年   128篇
  2006年   122篇
  2005年   73篇
  2004年   72篇
  2003年   74篇
  2002年   59篇
  2001年   41篇
  2000年   31篇
  1999年   32篇
  1998年   30篇
  1997年   15篇
  1996年   28篇
  1995年   16篇
  1994年   21篇
  1993年   18篇
  1992年   19篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   15篇
  1986年   9篇
  1985年   5篇
  1984年   14篇
  1983年   6篇
  1982年   13篇
  1981年   5篇
  1980年   5篇
  1979年   6篇
  1976年   4篇
  1975年   3篇
  1969年   7篇
  1935年   3篇
  1926年   2篇
排序方式: 共有2060条查询结果,搜索用时 15 毫秒
71.
The pi?on (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodlands of Bandelier National Monument are experiencing accelerated erosion. Earlier studies suggest that causes of these rapidly eroding woodlands are related to an unprecedented rapid transition of ponderosa pine (Pinus ponderosa C. Lawson) savanna to pi?on-juniper woodlands as a result of cumulative historical effects of overgrazing, fire suppression, and severe drought. To study the effectiveness of slash treatment in reducing accelerated erosion, we used sediment check dams to quantify sediment yield from twelve paired microwatersheds (300-1100 m2) within an existing paired water-shed study. Six of the twelve microwatersheds were located in a 41-ha (treatment) watershed with scattered slash treatment, whereas six microwatersheds were located in an adjacent 35-ha untreated (control) watershed. The primary purpose of our research was to quantify the rates of sediment yield between the treated and control microwatersheds. Sediment yield was measured from 15 individual storms during the months of June-September (2000 and 2001). In response to slash treatment, mean seasonal sediment yield for 2000 equaled 2.99 Mg/ha in the control vs. 0.03 Mg/ha in the treatment and 2.07 Mg/ha in the control vs. 0.07 Mg/ha in the treatment in 2001. The practice of slash treatment demonstrates efficacy in reducing erosion in degraded pi?on-juniper woodlands by encouraging herbaceous recovery. Our data show that slash treatment increases total ground cover (slash and herbaceous growth) beyond a potential erosion threshold. Restored pi?on-juniper woodlands, as the result of slash treatment, provide a forest structure similar to pre-grazing and pre-fire suppression conditions and decrease catastrophic fire hazard.  相似文献   
72.
Abstractions of surface and groundwater for irrigation in Scotland are currently subject to control in only two small catchments. Under the terms of the EU Water Framework Directive, it will be necessary to introduce new legislation to control abstractions elsewhere. To help in the development of appropriate policy for Scotland a study has been carried out to examine the significance of irrigation and the effectiveness of different types of control strategies in terms of the economics of potato cropping and stream hydrology in Scotland. This paper presents the findings of the hydrological study and highlights some of the spatial and temporal issues that need to be considered in the selection of control mechanisms, if they are to be successful in achieving objectives for environmental improvement.The study was focussed on two catchments in the east of Scotland, the Tyne and West Peffer. The effectiveness of several different abstraction control strategies was examined to see how stream flows in the catchment would be modified by their implementation. The results of the study demonstrated that the West Peffer catchment in particular is significantly affected by irrigation abstractions. Control mechanisms based on allowable monthly abstraction volumes and flow-based abstraction bans would be of considerable help in restoring stream flows to their natural levels, but would modify the hydrological regime in slightly different ways. A spatial analysis of stream flows demonstrated that implementation of controls based on a single monitoring point may be ineffective at maintaining acceptable levels of flow throughout the catchment and that this may require a tighter control at the monitoring point.  相似文献   
73.
The 1991 EU Nitrate Directive was designed to reduce water pollution from agriculturally derived nitrates. England and Wales implemented this Directive by controlling agricultural activities within their most vulnerable areas termed Nitrate Vulnerable Zones. These were designated by identifying drinking water catchments (surface and groundwater), at risk from nitrate pollution. However, this method contravened the Nitrate Directive because it only protected drinking water and not all waters. In this paper, a GIS was used to identify all areas of groundwater vulnerable to nitrate pollution. This was achieved by constructing a model containing data on four characteristics: the quality of the water leaving the root zone of a piece of land; soil information; presence of low permeability superficial (drift) material; and aquifer properties. These were combined in a GIS and the various combinations converted into a measure of vulnerability using expert knowledge. Several model variants were produced using different estimates of the quality of the water leaving the root zone and contrasting methods of weighting the input data. When the final models were assessed all produced similar spatial patterns and, when verified by comparison with trend data derived from monitored nitrate concentrations, all the models were statistically significant predictors of groundwater nitrate concentrations. The best predictive model contained a model of nitrate leaching but no land use information, implying that changes in land use will not affect designations based upon this model. The relationship between nitrate levels and borehole intake depths was investigated since there was concern that the observed contrasts in nitrate levels between vulnerability categories might be reflecting differences in borehole intake depths and not actual vulnerability. However, this was not found to be statistically important. Our preferred model provides the basis for developing a new set of groundwater Nitrate Vulnerable Zones that should help England and Wales to comply with the EU Nitrate Directive.  相似文献   
74.
A quantitative understanding of the relationship between terrestrial N inputs and riverine N flux can help guide conservation, policy, and adaptive management efforts aimed at preserving or restoring water quality. The objective of this study was to compare recently published approaches for relating terrestrial N inputs to the Mississippi River basin (MRB) with measured nitrate flux in the lower Mississippi River. Nitrogen inputs to and outputs from the MRB (1951 to 1996) were estimated from state-level annual agricultural production statistics and NOy (inorganic oxides of N) deposition estimates for 20 states that comprise 90% of the MRB. A model with water yield and gross N inputs accounted for 85% of the variation in observed annual nitrate flux in the lower Mississippi River, from 1960 to 1998, but tended to underestimate high nitrate flux and overestimate low nitrate flux. A model that used water yield and net anthropogenic nitrogen inputs (NANI) accounted for 95% of the variation in riverine N flux. The NANI approach accounted for N harvested in crops and assumed that crop harvest in excess of the nutritional needs of the humans and livestock in the basin would be exported from the basin. The U.S. White House Committee on Natural Resources and Environment (CENR) developed a more comprehensive N budget that included estimates of ammonia volatilization, denitrification, and exchanges with soil organic matter. The residual N in the CENR budget was weakly and negatively correlated with observed riverine nitrate flux. The CENR estimates of soil N mineralization and immobilization suggested that there were large (2000 kg N ha-1) net losses of soil organic N between 1951 and 1996. When the CENR N budget was modified by assuming that soil organic N levels have been relatively constant after 1950, and ammonia volatilization losses are redeposited within the basin, the trend of residual N closely matched temporal variation in NANI and was positively correlated with riverine nitrate flux in the lower Mississippi River. Based on results from applying these three modeling approaches, we conclude that although the NANI approach does not address several processes that influence the N cycle, it appears to focus on the terms that can be estimated with reasonable certainty and that are correlated with riverine N flux.  相似文献   
75.
A variety of models for predicting the behaviour of radionuclides in fresh water ecosystems have been developed and tested during recent decades within the framework of many international research projects. These models have been implemented in Computerised Decision Support Systems (CDSS) for assisting the appropriate management of fresh water bodies contaminated by radionuclides. The assessment of the state-of-the-art and the consolidation of these CDSSs has been envisaged, by the scientific community, as a primary necessity for the rationalisation of the sector. The classification of the approaches of the various models, the determination of their essential features, the identification of similarities and differences among them and the definition of their application domains are all essential for the harmonisation of the existing CDSSs and for the possible development and improvement of reference models that can be widely applied in different environmental conditions. The present paper summarises the results of the assessment and evaluation of models for predicting the behaviour of radionuclides in lacustrine ecosystems. Such models were developed and tested within major projects financed by the European Commission during its 4th Framework Programme (1994-1998). The work done during the recent decades by many modellers at an international level has produced some consolidated results that are widely accepted by most experts. Nevertheless, some new results have arisen from recent studies and certain model improvements are still necessary.  相似文献   
76.
77.
Emissions of sulphur and oxidized nitrogen compounds in Europe have been reduced following a series of control measures during the last two decades. These changes have taken place during a period in which the primary gases and the wet deposition throughout Europe were extensively monitored. Since the end of the 1970s, for example land based sulphur emissions declined by between 90 and 70% depending on the region. Over the same period the total deposition of sulphur and its partitioning into wet and dry deposition have declined, but the spatial pattern in the reduction in deposition differs from that of emission and has changed with time. Such non-linearities in the emission-deposition relationship are important to understand as they complicate the process of assessing the effects of emission reduction strategies. Observed non-linearities in terrestrial sulphur emission-deposition patterns have been identified in north west Europe due to increases in marine emissions, and are currently slowing the recovery of freshwater ecosystems. Changes in the relative amounts of SO2 and NH3 in air over the last two decades have also changed the affinity of terrestrial surfaces for SO2 and have therefore changed the deposition velocity of SO2 over substantial areas. The consequence of this effect has been the very rapid reduction in ambient SO2 concentration in some of the major source areas of Europe, where NH3 did not change much. Interactions between the different pollutants, generating non-linearities are now being incorporated in long-range transport models to simulate the effects of historical emission trends and to provide projections into the future. This paper identifies non-linearities in emission deposition relationships for sulphur and nitrogen compounds in Europe using data from the EMEP long-rang transport model and measured concentration fields of the major ions in precipitation and of SO2 and NO2 in surface air.  相似文献   
78.
The environmental fate and transport of chlorinated volatile organic compounds (VOCs) is controlled by the physical and chemical properties of the compound and the nature of the subsurface media through which the compound is migrating. Several processes (advection, dispersion, diffusion, biodegradation, and abiotic degradation, to name a few) result in a reduction in concentration and/or mass of contaminants in groundwater. Of these processes, biodegradation is often considered the dominant destructive attenuation mechanism for chlorinated VOCs. However, chlorinated VOCs can also degrade through abiotic processes and, in some cases, may be the primary or only destructive process occurring. © 2007 Wiley Periodicals, Inc.  相似文献   
79.
Abstract: In January 2001, the U.S. Supreme Court ruled that the U.S. Army Corps of Engineers exceeded its statutory authority by asserting Clean Water Act (CWA) jurisdiction over non‐navigable, isolated, intrastate waters based solely on their use by migratory birds. The Supreme Court’s majority opinion addressed broader issues of CWA jurisdiction by implying that the CWA intended some “connection” to navigability and that isolated waters need a “significant nexus” to navigable waters to be jurisdictional. Subsequent to this decision (SWANCC), there have been many lawsuits challenging CWA jurisdiction, many of which are focused on headwater, intermittent, and ephemeral streams. To inform the legal and policy debate surrounding this issue, we present information on the geographic distribution of headwater streams and intermittent and ephemeral streams throughout the U.S., summarize major findings from the scientific literature in considering hydrological connectivity between headwater streams and downstream waters, and relate the scientific information presented to policy issues surrounding the scope of waters protected under the CWA. Headwater streams comprise approximately 53% (2,900,000 km) of the total stream length in the U.S., excluding Alaska, and intermittent and ephemeral streams comprise approximately 59% (3,200,000 km) of the total stream length and approximately 50% (1,460,000 km) of the headwater stream length in the U.S., excluding Alaska. Hillslopes, headwater streams, and downstream waters are best described as individual elements of integrated hydrological systems. Hydrological connectivity allows for the exchange of mass, momentum, energy, and organisms longitudinally, laterally, vertically, and temporally between headwater streams and downstream waters. Via hydrological connectivity, headwater, intermittent and ephemeral streams cumulatively contribute to the functional integrity of downstream waters; hydrologically and ecologically, they are a part of the tributary system. As this debate continues, scientific input from multiple fields will be important for policymaking at the federal, state, and local levels and to inform water resource management regardless of the level at which those decisions are being made. Strengthening the interface between science, policy, and public participation is critical if we are going to achieve effective water resource management.  相似文献   
80.
The flammability of vapors above aqueous solutions of ethanol and acetonitrile was studied experimentally in a 20-L combustion apparatus. No liquid was present in the apparatus, but the vapor concentrations were adjusted to correspond to the vapor in equilibrium with a specified aqueous solution. The experimental results for these two systems show that
• As water is added to the vapor, the lower boundary of the flammability zone decreases. For ethanol, the lower flammability limits (LFL) decreases from 3.7% for pure vapor to 3.2% with saturated water vapor. For acetonitrile, the decrease is from 4.2% to 3.8%. Thus, to a good approximation, the water vapor can be treated as an inert, enabling the data to be displayed on a single flammability triangle diagram. This provides a very simplified method for estimating the flammable behavior for aqueous solutions.

• The upper boundary of the flammability zone is unchanged with the addition of water.

• The limiting oxygen concentration (LOC) is essentially constant for all concentrations of aqueous solutions. The LOC for the pure solvent may be used as a universal LOC for all solvent concentrations.

• The vapor mixture above the aqueous solution is not flammable below a certain liquid mol fraction of flammable. The flammable concentration at which this occurs can be called the maximum safe solvent concentration (MSSC). A method is presented to determine the MSSC from experimental flammability data.

• The oxygen concentration defining the flammable boundary for the vapor decreases rapidly from the MSSC and then increases as the liquid solvent concentration increases.

The calculated adiabatic flame temperature (CAFT) method qualitatively predicts the same behavior as the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号