首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1900篇
  免费   51篇
  国内免费   20篇
安全科学   129篇
废物处理   82篇
环保管理   445篇
综合类   209篇
基础理论   490篇
环境理论   2篇
污染及防治   386篇
评价与监测   124篇
社会与环境   72篇
灾害及防治   32篇
  2023年   15篇
  2022年   24篇
  2021年   22篇
  2020年   26篇
  2019年   24篇
  2018年   47篇
  2017年   61篇
  2016年   67篇
  2015年   64篇
  2014年   60篇
  2013年   131篇
  2012年   86篇
  2011年   155篇
  2010年   100篇
  2009年   88篇
  2008年   114篇
  2007年   125篇
  2006年   120篇
  2005年   72篇
  2004年   71篇
  2003年   71篇
  2002年   59篇
  2001年   40篇
  2000年   28篇
  1999年   30篇
  1998年   28篇
  1997年   15篇
  1996年   25篇
  1995年   16篇
  1994年   20篇
  1993年   17篇
  1992年   17篇
  1991年   9篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   15篇
  1986年   9篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1969年   3篇
  1937年   2篇
  1936年   2篇
  1935年   3篇
  1926年   2篇
排序方式: 共有1971条查询结果,搜索用时 31 毫秒
121.
Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has caused catastrophic vulture declines across the Indian sub-continent. Here, an indirect ELISA is used to detect and quantify diclofenac in 1251 liver samples from livestock carcasses collected across India between August 2007 and June 2008, one to two years after a ban on diclofenac manufacture and distribution for veterinary use was implemented. The ELISAs applicability was authenticated with independent data obtained using LC-ESI/MS. Of 1251 samples, 1150 (91.9%) were negative for diclofenac using both methods, and 60 (4.8%) were positive at 10-4348 and 10-4441 μg kg(-1) when analysed by ELISA and LC-ESI/MS, respectively. The residue level relationship in the 60 positive samples was highly significant (p < 0.001, r(2) = 0.644). Data suggest that this immunological assay could be used not only for cost effective sample screening, but also for residue level semi-quantification.  相似文献   
122.
123.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   
124.
The aim of the present work was to establish the kinetics for the degradation of doxycycline in the aquatic environment with a view to arriving at a kinetic model that can be used to predict the persistence of antibiotic with confidence. The degradation of doxycycline in both water and sediment phases of aquatic microcosm experiments, as well as in distilled water control experiments, was studied over a period of 90 days. An initial 21% loss due to adsorption by the sediment was observed in the microcosm experiment soon after charging. Biphasic zero-order linear rates of degradation, attributed to microbial degradation of the free and sediment or colloidal particle-adsorbed antibiotic, were observed for both water phase (2.3 × 10?2 and 4.5 × 10?3 μgg?1 day?1) and sediment phase (7.9 × 10?3 and 1.5 × 10?3 μgg?1 day?1) of the microcosm experiment. The covered distilled water control experiment exhibited a monophasic zero-order linear rate (1.9 × 10?3 μgg?1 day?1) attributed to hydrolysis, while the distilled water experiment exposed to natural light exhibited biphasic liner rates attributed to a combination of hydrolysis and photolysis (2.9 × 10?3 μgg?1 day?1) and to microbial degradation (9.8 × 10?3 μgg?1 day?1). A kinetic model that takes into account hydrolysis, photolysis, microbial degradation as well as sorption/desorption by colloidal and sediment particles is presented to account for the observed zero-order kinetics. The implications of the observed kinetics on the persistence of doxycycline in the aquatic environment are discussed.  相似文献   
125.
Appendix     
Abstract

An atrazine‐degrading bacterial isolate (M91–3) was able to utilize simazine and cyanazine as N sources for glucose‐dependent growth. The degradation of these three 5‐triazine herbicides was also investigated in binary and ternary mixtures. The organism used atrazine and simazine indiscriminately, whereas cyanazine degradation was slow and delayed until the depletion of the two other herbicides. There was no apparent effect of other commonly used herbicides on the rate of atrazine degradation by M91–3.  相似文献   
126.
A series of miscible-displacement experiments was conducted to examine the retention and transport behavior of oocysts in natural porous media. Three soils and a model sand were used that differed in physical and geochemical properties. Transport behavior was examined under various treatment conditions to help evaluate retention mechanisms. Significant retention of oocysts was observed for all media despite the fact that conditions were unfavorable for physicochemical interactions with respect to DLVO theory. The magnitude of retention was not influenced significantly by alterations in solution chemistry (reduction in ionic strength) or soil surface properties (removal of soil organic matter and metal oxides). On the basis of the observed results, it appears that retention by secondary energy minima or geochemical microdomains was minimal for these systems. The porous media used for the experiments exhibited large magnitudes of surface roughness, and it is suggested that this surface roughness contributed significantly to oocyst retention.  相似文献   
127.
Managers of the nearly 0.5 million ha of public lands in North and South Dakota, USA rely heavily on manual measurements of canopy height in autumn to ensure conservation of grassland structure for wildlife and forage for livestock. However, more comprehensive assessment of vegetation structure could be achieved for mixed-grass prairie by integrating field survey, topographic position (summit, mid and toeslope) and spectral reflectance data. Thus, we examined the variation of mixed-grass prairie structural attributes (canopy leaf area, standing crop mass, canopy height, nitrogen, and water content) and spectral vegetation indices (VIs) with variation in topographic position at the Grand River National Grassland (GRNG), South Dakota. We conducted the study on a 36,000-ha herbaceous area within the GRNG, where randomly selected plots (1?km2 in size) were geolocated and included summit, mid and toeslope positions. We tested for effects of topographic position on measured vegetation attributes and VIs calculated from Landsat TM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data collected in July 2010. Leaf area, standing crop mass, canopy height, nitrogen, and water content were lower at summits than at toeslopes. The simple ratio of Landsat Band 7/Band 1 (SR71) was the VI most highly correlated with canopy standing crop and height at plot and landscape scales. Results suggest field and remote sensing-based grassland assessment techniques could more comprehensively target low structure areas at minimal expense by layering modeled imagery over a landscape stratified into topographic position groups.  相似文献   
128.
This work presents a short review of adsorptive materials proposed and tested for removing phthalates from an aqueous environment. The objective is not to present an exhaustive review of all the types of adsorbents used, but to focus on selected types of "innovative" materials. Examples include modified activated carbon, chitosan and its modifications, β-cyclodextrin, and specific types of biomass, such as activated sludge from a wastewater treatment plant, seaweed and microbial cultures. Data from the literature do not confirm the existence of a broad-spectral adsorbent with high sorption efficiency, low production costs and environmentally friendly manufacture. According to the coefficients of Freundlich's isotherm, the most promising adsorbent of those mentioned in this work appears to be the biomass of activated sludge, or extracellular polysaccharides extracted from it. This material benefits from steady production, is cheap and readily available. Nevertheless, before putting it in practice, the treatment and adaptation of this raw material has to be taken into consideration.  相似文献   
129.
Occurrence and fate of 45 pesticides and 40 pesticide degradates were investigated in four contrasting agricultural settings--in Maryland, Nebraska, California, and Washington. Primary crops included corn at all sites, soybeans in Maryland, orchards in California and Washington, and vineyards in Washington. Pesticides and pesticide degradates detected in water samples from all four areas were predominantly from two classes of herbicides--triazines and chloroacetanilides; insecticides and fungicides were not present in the shallow ground water. In most samples, pesticide degradates greatly exceeded the concentrations of parent pesticide. In samples from Nebraska, the parent pesticide atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was about the same concentration as the degradate, but in samples from Maryland and California atrazine concentrations were substantially smaller than its degradate. Simazine [6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine], the second most detected triazine, was detected in ground water from Maryland, California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely was detected without its degradates, and when they were detected in the same sample metolachlor always had smaller concentrations. The Root-Zone Water-Quality Model was used to examine the occurrence and fate of metolachlor at the Maryland site. Simulations accurately predicted which metolachlor degradate would be predominant in the unsaturated zone. In analyses of relations among redox indicators and pesticide variance, apparent age, concentrations of dissolved oxygen, and excess nitrogen gas (from denitrification) were important indicators of the presence and concentration of pesticides in these ground water systems.  相似文献   
130.
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号