首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27159篇
  免费   238篇
  国内免费   230篇
安全科学   684篇
废物处理   1348篇
环保管理   2941篇
综合类   3682篇
基础理论   6845篇
环境理论   15篇
污染及防治   7902篇
评价与监测   2195篇
社会与环境   1866篇
灾害及防治   149篇
  2023年   168篇
  2022年   378篇
  2021年   426篇
  2020年   238篇
  2019年   285篇
  2018年   562篇
  2017年   593篇
  2016年   855篇
  2015年   589篇
  2014年   949篇
  2013年   2328篇
  2012年   1081篇
  2011年   1329篇
  2010年   1127篇
  2009年   1046篇
  2008年   1290篇
  2007年   1383篇
  2006年   1195篇
  2005年   971篇
  2004年   937篇
  2003年   881篇
  2002年   831篇
  2001年   1007篇
  2000年   686篇
  1999年   447篇
  1998年   307篇
  1997年   272篇
  1996年   311篇
  1995年   311篇
  1994年   279篇
  1993年   246篇
  1992年   259篇
  1991年   228篇
  1990年   232篇
  1989年   230篇
  1988年   210篇
  1987年   168篇
  1986年   150篇
  1985年   152篇
  1984年   180篇
  1983年   163篇
  1982年   211篇
  1981年   144篇
  1980年   132篇
  1979年   159篇
  1978年   126篇
  1977年   114篇
  1976年   109篇
  1975年   89篇
  1974年   90篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.  相似文献   
962.
Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively.  相似文献   
963.
The aim of the present study was to assess the antifungal and anti-toxinogenic activity of 15 essential oils (EOs) against three fungi of the genus Aspergillus (A. parasiticus KMi-227-LR, A. parasiticus KMi-220-LR and A. flavus KMi-202-LR). The minimum inhibitory doses (MIDs) of the tested essential oils and their antifungal activity were determined using the micro-atmosphere method. The original commercial essential oil samples of Jasminum officinale L., Thymus vulgaris L., Syzygium aromaticum (L.) Merrill &; Perry, Rosmarinus officinalis L., Ocimum basilicum L., Eucalyptus globulus Labill., Salvia officinalis L., Citrus limon (L.) Burm, Origanum vulgare L., Lavandula angustifolia Mill., Carum carvi L., Citrus sinensis (L.) Osbeck., Zingiber officinalis Rosc., Mentha piperita L. and Cinnamomum zeylanicum Nees. (C. verum J.S.Presl.) were produced in Slovakia (Calendula a.s., Nová ?ubovňa, Slovakia). All essential oils exhibited activity against all tested strains of fungi. After 14 days of incubation, A. flavus (KMi-202-LR) showed the highest susceptibility with a growth inhibition percentage (GIP) of 18.70% to C. limon and 5.92% to C. sinensis, while A. parasiticus (KMi-220-LR) exhibited a GIP of 20.56% to J. officinale. The minimum inhibitory doses (MIDs) of EOs with the most significant activity were recorded. The best antifungal activity, using the micro-atmosphere method was found in S. aromaticum with an MID of 62.5 μL L?1 air, T. vulgaris (MID of 62.5 μL L?1 air) and O. vulgare (MID of 31.5 μL L?1 air) against all tested strains. Mycotoxin production of the tested strains was evaluated by the thin layer chromatography (TLC) method. Mycotoxin production of AFB1 and AFG1 was inhibited following all treatments with C. carvi, R. officinale and S. officinale, Eucalyptus globulus L. and O. basilicum L. Essential oils exhibited a potential inhibition activity against toxic fungi, although, these affected only the production of AFB1.  相似文献   
964.
Concentrations of eight elements were measured in Chelonia mydas and Lepidochelys olivacea eggs collected along the Pacific coast of Panama. Manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), and mercury (Hg) concentrations were similar to previous reports of these species from around the world, while lead (Pb) was lower than previous reports. Cd posed the highest health risk to people who regularly eat the eggs, with average consumption rates leading to target hazard quotients (THQ) of up to 0.35 ± 0.15. Our conclusions indicate that current turtle egg consumption in isolated, coastal Pacific communities may pose a health concern for young children, and that youth and young adults should limit their consumption of turtle eggs to reduce their total intake of nonessential metals.  相似文献   
965.
Little research has been conducted on the occurrence of pharmaceuticals and personal care products (PPCPs) in the marine environment despite being increasingly impacted by these contaminants. This article reviews data on the occurrence of PPCPs in seawater, sediment, and organisms in the marine environment. Data pertaining to 196 pharmaceuticals and 37 personal care products reported from more than 50 marine sites are analyzed while taking sampling strategies and analytical methods into account. Particular attention is focused on the most frequently detected substances at highest concentrations. A snapshot of the most impacted marine sites is provided by comparing the highest concentrations reported for quantified substances. The present review reveals that: (i) PPCPs are widespread in seawater, particularly at sites impacted by anthropogenic activities, and (ii) the most frequently investigated and detected molecules in seawater and sediments are antibiotics, such as erythromycin. Moreover, this review points out other PPCPs of concern, such as ultraviolet filters, and underlines the scarcity of data on those substances despite recent evidence on their occurrence in marine organisms. The exposure of marine organisms in regard to these insufficient data is discussed.  相似文献   
966.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   
967.
Sediments from the Castilseras reservoir, located downstream on the Valdeazogues River in the Almadén mercury district, were collected to assess the potential contamination status related to metals(oids) associated with river sediment inputs from several decommissioned mines. Metals(oids) concentrations in the reservoir sediments were investigated using different physical and chemical techniques. The results were analyzed by principal component analysis (PCA) to explain the correlations between the sets of variables. The degree of contamination was evaluated using the enrichment factor (EF) and the geoaccumulation index (Igeo). PCA revealed that the silty fraction is the main metals(oids) carrier in the sediments. Among the potentially harmful elements, there is a group (Al, Cr, Cu, Fe, Mn, Ni, and Zn) that cannot be strictly correlated to the mining activity since their concentrations depend on the lithological and edaphological characteristics of the materials. In contrast, As, Co, Hg, Pb, and S showed significant enrichment and contamination, thus suggesting relevant contributions from the decommissioned mines through fluvial sediment inputs. As far as Hg and S are concerned, the high enrichment levels pose a question concerning the potential environmental risk of transfer of the organic forms of Hg (mainly methylmercury) from the bottom sediments to the aquatic food chain.  相似文献   
968.
A multi-disciplinary approach was used to evaluate the health of yellow perch (Perca flavescens) in the St. Lawrence River (Quebec, Canada), which is experiencing a severe population decline in the downstream portion of the river. Physiological parameters, liver alterations, trace metal concentrations, parasite prevalence and abundance, stable isotope composition, and the presence/absence of the viral hemorragic septicemia virus (VHSV) were evaluated in perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island, and Lake St. Pierre (north and south). Trace metal concentrations in surface water were higher in Lake St. Louis and downstream of a major urban wastewater treatment plant discharge, indicating that this effluent was a significant source of Cu, As, Ag, Zn, and Cd. Levels of Pb in surface water exceeded thresholds for the protection of aquatic life in Lake St. Louis and were negatively correlated with body condition index in this lake. In Lake St. Pierre, Cu, Ag, and Cd bioaccumulated significantly in perch liver and lower body condition index and greater liver damage were observed compared to upstream sites. Parasite analyses indicated a higher abundance of metacercariae of the trematodes Apophallus brevis and Diplostomum spp. in Lake St. Louis, and VHSV was not detected in the liver of yellow perch for all studied sites. Overall, results suggested that the global health of yellow perch from Lake St. Pierre is lower compared to upstream studied sites, which could contribute to the documented population collapse at this site.  相似文献   
969.
Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4?±?0.1 mg l?1 of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a?=?2.04 μg l?1; turbidity?=?2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a?=?50.3 μg l?1; turbidity?=?16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.  相似文献   
970.
This work focuses on the exposure of maize plants to nanomolar concentrations of Cd, which is relevant for agricultural soils cropped with food and feed plants. Maize plants were cultivated in nutrient solution at 0.8 or 20 nM Cd during the vegetative growth stages. No significant hormesis or toxic effects of Cd were observed on maize growth, but a decrease in the allocation of Cd to shoots between the 0.8 and 20 nM Cd exposures revealed that the plants already responded to these low concentrations of Cd according to a shoot Cd excluder strategy. The Cd, Cu and Zn concentrations in shoots decreased with time as the result of an early decrease in the root/shoot ratio and of a decrease in the coefficient of allocation to aboveground for Zn and Cd at 20 nM. As a consequence, shoots of young plants were richer in micronutrients Cu and Zn but also in toxic Cd. The rate of delivery of Cd, Cu and Zn from xylem sap was successfully used to predict the time course of concentrations of Cd, Cu and Zn in the shoot. However, it overestimated the actual concentrations of Cd in the shoot, presumably because the reallocation of this trace element from shoots back to roots was not taken into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号